A Hall Thruster Performance Model Incorporating the Effects of a Multiply-Charged Plasma

A Hall thruster performance model that predicts anode specific impulse, anode efficiency, and thrust is discussed. The model is derived as a function of a voltage loss parameter, an electron loss parameter, and the charge state of the plasma. Experimental data from SPT and TAL type thrusters up to discharge powers of 21.6 kW are used to determine the best fit for model parameters. General values for the model parameters are found, applicable to high power thrusters and irrespective of thruster type. Performance of a 50 kW thruster is calculated for an anode specific impulse of 2500 seconds or a discharge current of 100 A.

[1]  Lee S. Mason,et al.  NASA's Hall Thruster Program , 2001 .

[2]  H. R. Kaufman,et al.  Technology of closed-drift thrusters , 1983 .

[3]  Michael Day,et al.  SPT-115 development and characterization , 1999 .

[4]  Alec D. Gallimore,et al.  Mass Spectral Measurements in the Plume of an SPT-100 Hall Thruster , 2000 .

[5]  Vladimir Kim,et al.  Development and characterization of small SPT , 1998 .

[6]  Lee S. Mason,et al.  1000 Hours of Testing on a 10 Kilowatt Hall Effect Thruster , 2001 .

[7]  A. V. Zharinov,et al.  Characteristics of a two-stageion accelerator with an anode layer , 1978 .

[8]  V. Kim Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters , 1998 .

[9]  H. Declercq,et al.  Power processing unit for stationary plasma thruster , 1998 .

[10]  Robert S. Jankovsky,et al.  Preliminary Evaluation of a 10 kW Hall Thruster , 1999 .

[11]  Bruce Pote,et al.  Development of the BPT family of U.S.-designed Hall current thrusters for commercial LEO and GEO applications , 1998 .

[12]  B Pote,et al.  Performance of an 8 kW Hall Thruster , 2000 .

[13]  Alec D. Gallimore,et al.  Transport-Property Measurements in the Plume of an SPT-100 Hall Thruster , 1998 .

[14]  Roger M. Myers,et al.  Advanced propulsion for geostationary orbit insertion and north-south station keeping , 1995 .

[15]  Alec D. Gallimore,et al.  Near-Field Ion Energy and Species Measurements of a 5-kW Hall Thruster , 2001 .

[16]  David H. Manzella,et al.  Operational Characteristics of the SPT-140 Hall Thruster , 1997 .

[17]  Michael Keidar,et al.  EFFECT OF A MAGNETIC FIELD ON THE PLASMA PLUME FROM HALL THRUSTERS , 1999 .

[18]  Robert S. Jankovsky,et al.  Performance Evaluation of a 50 kW Hall Thruster , 1999 .

[19]  Lyon B. King Transport-property and mass spectral measurements in the plasma exhaust plume of a Hall-effect space propulsion system , 1998 .

[20]  Steven R. Oleson,et al.  Advanced Hall Electric Propulsion for Future In-Space Transportation , 2001 .

[21]  Steven R. Oleson Advanced Electric Propulsion for RLV Launched Geosynchronous Spacecraft , 1999 .

[22]  Steven R. Oleson Electric Propulsion for Low Earth Orbit Communication Satellites , 1997 .

[23]  John M. Sankovic,et al.  Hall thruster ion beam characterization , 1995 .

[24]  R. Vahrenkamp Measurement of double charged ions in the beam of a 30-cm mercury bombardment thruster , 1973 .

[25]  Tate Schappell,et al.  Testing of a U.S.-built HET system for orbit transfer applications , 1999 .