A Molecular Fluorescent Probe for Targeted Visualization of Temperature at the Endoplasmic Reticulum

The dynamics of cellular heat production and propagation remains elusive at a subcellular level. Here we report the first small molecule fluorescent thermometer selectively targeting the endoplasmic reticulum (ER thermo yellow), with the highest sensitivity reported so far (3.9%/°C). Unlike nanoparticle thermometers, ER thermo yellow stains the target organelle evenly without the commonly encountered problem of aggregation, and successfully demonstrates the ability to monitor intracellular temperature gradients generated by external heat sources in various cell types. We further confirm the ability of ER thermo yellow to monitor heat production by intracellular Ca2+ changes in HeLa cells. Our thermometer anchored at nearly-zero distance from the ER, i.e. the heat source, allowed the detection of the heat as it readily dissipated, and revealed the dynamics of heat production in real time at a subcellular level.

[1]  Peter Gölitz,et al.  Cover Picture: Champagne and Fireworks: Angewandte Chemie Celebrates Its Birthday (Angew. Chem. Int. Ed. 1/2013) , 2013 .

[2]  M. Tschöp,et al.  Brown fat in a protoendothermic mammal fuels eutherian evolution , 2013, Nature Communications.

[3]  D L Alkon,et al.  Thermal imaging of receptor-activated heat production in single cells. , 1998, Biophysical journal.

[4]  Shinsuke Shigeto,et al.  In Vivo Probing of the Temperature Responses of Intracellular Biomolecules in Yeast Cells by Label‐Free Raman Microspectroscopy , 2013, ChemBioChem.

[5]  Y. Harada,et al.  Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy , 2012, Nature Communications.

[6]  S. Ishiwata,et al.  Highly thermosensitive Ca2+ dynamics in a HeLa cell through IP3 receptors , 2009, HFSP journal.

[7]  Otto S. Wolfbeis,et al.  Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range , 2010, Advanced materials.

[8]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[9]  Luís D Carlos,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[10]  J. C. Miltenburg,et al.  Heat production of mammalian cells at different cell-cycle phases , 1982 .

[11]  G. Pucella,et al.  Correction: Corrigendum: Current drive at plasma densities required for thermonuclear reactors , 2013, Nature Communications.

[12]  D. Clark,et al.  Microcalorimetric measurements of heat production in brown adipocytes from control and cafeteria-fed rats. , 1986, The Biochemical journal.

[13]  H. Rigneault,et al.  A critique of methods for temperature imaging in single cells , 2014, Nature Methods.

[14]  N. Demaurex,et al.  Measurements of the free luminal ER Ca(2+) concentration with targeted "cameleon" fluorescent proteins. , 2003, Cell calcium.

[15]  P. Lishko,et al.  Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria , 2012, Cell.

[16]  K. Ghiggino,et al.  The photophysics of rhodamine B , 1982 .

[17]  B. L. de Groot,et al.  Predicting free energy changes using structural ensembles. , 2009, Nature methods.

[18]  Li Shang,et al.  Intracellular thermometry by using fluorescent gold nanoclusters. , 2013, Angewandte Chemie.

[19]  R Y Tsien,et al.  Mechanisms of pH Regulation in the Regulated Secretory Pathway* , 2001, The Journal of Biological Chemistry.

[20]  Young-Tae Chang,et al.  Diversity-driven chemical probe development for biomolecules: beyond hypothesis-driven approach. , 2011, Chemical Society reviews.

[21]  Kotaro Oyama,et al.  Microscopic detection of thermogenesis in a single HeLa cell. , 2007, Biophysical journal.

[22]  Liwei Lin,et al.  Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. , 2011, ACS nano.

[23]  Satoshi Arai,et al.  A nanoparticle-based ratiometric and self-calibrated fluorescent thermometer for single living cells. , 2014, ACS nano.

[24]  Curtis F. Chapman,et al.  THE USE OF EXOGENOUS FLUORESCENT PROBES FOR TEMPERATURE MEASUREMENTS IN SINGLE LIVING CELLS , 1995, Photochemistry and photobiology.

[25]  Kenjiro Watanabe,et al.  Infrared laser–mediated gene induction in targeted single cells in vivo , 2009, Nature Methods.

[26]  Nam-Young Kang,et al.  Neural stem cell specific fluorescent chemical probe binding to FABP7 , 2012, Proceedings of the National Academy of Sciences.

[27]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[28]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[29]  Erik F. Y. Hom,et al.  Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. , 1999, Biophysical journal.

[30]  Sung-Jin Park,et al.  Visualization and isolation of Langerhans islets by a fluorescent probe PiY. , 2013, Angewandte Chemie.

[31]  K. Flaherty,et al.  Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals , 2012, Nature Medicine.

[32]  Romain Quidant,et al.  Mapping intracellular temperature using green fluorescent protein. , 2012, Nano letters.

[33]  Jonathan S. Dordick,et al.  Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice , 2012, Science.

[34]  Marc Vendrell,et al.  Combinatorial strategies in fluorescent probe development. , 2012, Chemical reviews.

[35]  Hiromi Imamura,et al.  Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells , 2013, Nature Methods.

[36]  S. Arai,et al.  Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells. , 2012, Lab on a chip.

[37]  Bruce M. Spiegelman,et al.  Towards a molecular understanding of adaptive thermogenesis , 2000, Nature.

[38]  A. P. Arruda,et al.  Role of Sarco/Endoplasmic Reticulum Ca2+-ATPase in Thermogenesis , 2005, Bioscience reports.