Reconstruction algorithms applied to in-line Gabor digital holographic microscopy

This paper investigates the application of Fresnel based numerical algorithms for the reconstruction of Gabor in-line holograms. We focus on the two most widely used Fresnel approximation algorithms, the direct method and the angular spectrum method. Both algorithms involve calculating a Fresnel integral, but they accomplish it in fundamentally different ways. The algorithms perform differently for different physical parameters such as distance, CCD pixel size, and so on. We investigate the constraints for the algorithms when applied to in-line Gabor digital holographic microscopy. We show why the algorithms fail in some instances and how to alter them in order to obtain useful images of the microscopic specimen. We verify the altered algorithms using an optically captured digital hologram.

[1]  William T. Rhodes,et al.  Analytical and numerical analysis of linear optical systems , 2006 .

[2]  Ulf Schnars,et al.  Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum , 1996 .

[3]  J. Goodman Introduction to Fourier optics , 1969 .

[4]  John T. Sheridan,et al.  Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  M H Jericho,et al.  Comment on "Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution". , 2006, Optics letters.

[6]  Taslima Khanam,et al.  Three dimensional digital holographic profiling of micro-fibers. , 2009, Optics express.

[7]  D. Gabor A New Microscopic Principle , 1948, Nature.

[8]  H J Tiziani,et al.  In-line digital holographic interferometry. , 1998, Applied optics.

[9]  R. Dorsch,et al.  Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. , 1996, Applied optics.

[10]  Thomas S. Huang,et al.  Digital Holography , 2003 .

[11]  Osamu Matoba,et al.  Three-Dimensional Imaging and Processing Using Computational Holographic Imaging , 2006, Proceedings of the IEEE.

[12]  T. Nuteson,et al.  The spatially averaged electric field in the near field and far field of a circular aperture , 2003 .

[13]  Carlos Ferreira,et al.  Fast algorithms for free-space diffraction patterns calculation , 1999 .

[14]  David Mas,et al.  Fast numerical calculation of Fresnel patterns in convergent systems , 2003 .

[15]  S. A. Collins Lens-System Diffraction Integral Written in Terms of Matrix Optics , 1970 .

[16]  Peter Klages,et al.  Digital in-line holographic microscopy. , 2006 .

[17]  Zeev Zalevsky,et al.  Computation considerations and fast algorithms for calculating the diffraction integral , 1997 .

[18]  P. Scott,et al.  Phase retrieval and twin-image elimination for in-line Fresnel holograms , 1987 .

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  Werner P. O. Jueptner,et al.  Suppression of the dc term in digital holography , 1997 .

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  Emmett N. Leith,et al.  Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects* , 1964 .

[23]  B. Javidi,et al.  Analysis of practical sampling and reconstruction from Fresnel fields , 2004 .

[24]  R. W. Lawrence,et al.  Digital Image Formation From Electronically Detected Holograms , 1967 .

[25]  Bryan Hennelly,et al.  Motion detection, the Wigner distribution function, and the optical fractional Fourier transform. , 2003, Optics letters.

[26]  L. B. Lesem,et al.  Scientific Applications: Computer synthesis of Holograms for 3-D display , 1968, CACM.

[27]  Manfred H. Jericho,et al.  4-D imaging of fluid flow with digital in-line holographic microscopy , 2008 .

[28]  M H Jericho,et al.  Digital in-line holography of microspheres. , 2002, Applied optics.