Spectral Measures of \(\alpha \)-Stable Distributions: An Overview and Natural Applications in Wireless Communications

Currently, we are witnessing the proliferation of wireless sensor networks and the superposition of several communicating objects which have a heterogeneous nature. Those are merely the beginnings of an evolution toward the so-called Internet of Things. The advent of these networks as well as the increasing demand for improved quality and services will increase the complexity of communications and put a strain on current techniques and models. Indeed, they must first adapt to the temporal and spatial evolutions and second, they must take into account the rare and unpredictable events that can have disastrous consequences for decision-making. This chapter provides an overview of the various spectral techniques used in signal processing and statistics literature to describe a communication channel having an impulsive behavior. This project is mainly motivated by the historical success of the interaction between probability, statistics and the world of communications, information theory and signal processing. The second motivation is the scarcity of references and literature summarizing mathematical developments on the application of alpha-stable process for channel modeling. This chapter will be divided into two parts: the first is devoted to the synthesis of various developments on alpha-stable variables and processes in a purely mathematical mind. The second part will be devoted to applications in the context of communications. The two sides will combine two fundamentally linked aspects: first, a theoretical approach, necessary for a good formalization of problems and identifying the best solutions. Second, the use of these models in real work of channel modeling.

[1]  Rama Chellappa,et al.  Adaptive target detection in foliage-penetrating SAR images using alpha-stable models , 1999, IEEE Trans. Image Process..

[2]  Nikolay N. Demesh,et al.  Estimation of the spectral density of a homogeneous random stable discrete time field , 2005 .

[3]  P.F.M. Smulders,et al.  Wide-band simulations and measurements of MM-wave indoor radio channels , 1994, 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks - Catching the Mobile Future..

[4]  Kyutae Lim,et al.  Analysis of 60 GHz band indoor wireless channels with channel configurations , 1998, Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Cat. No.98TH8361).

[5]  G. Miller Some Results on Symmetric Stable Distributions and Processes. , 1977 .

[6]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[7]  Jan Rosiński,et al.  On Series Representations of Infinitely Divisible Random Vectors , 1990 .

[8]  J. Krivine,et al.  Lois stables et espaces $L^p$ , 1967 .

[9]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[10]  S. Cambanis,et al.  Some Path Properties of p-th Order and Symmetric Stable Processes. , 1980 .

[11]  E. Parzen On Consistent Estimates of the Spectrum of a Stationary Time Series , 1957 .

[12]  Elias Masry,et al.  Alias-free sampling: An alternative conceptualization and its applications , 1978, IEEE Trans. Inf. Theory.

[13]  T. Ferguson,et al.  A Representation of Independent Increment Processes without Gaussian Components , 1972 .

[14]  C. D. Hardin,et al.  On the spectral representation of symmetric stable processes , 1982 .

[15]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[16]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[17]  Ghaïs El Zein,et al.  Wideband and dynamic characterization of the 60GHZ indoor radio propagation — future homeWLAN architectures , 2003, Ann. des Télécommunications.

[18]  Paul-Alain Rolland,et al.  Wide band 60 GHz indoor channel: characterization and statistical modeling , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[19]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..

[20]  N. Wiener Generalized harmonic analysis , 1930 .

[21]  Michael Schilder,et al.  Some Structure Theorems for the Symmetric Stable Laws , 1970 .

[22]  S. W. Wales,et al.  Wideband propagation measurements of short range millimetric radio channels , 1993 .

[23]  M. Kanter,et al.  Linear sample spaces and stable processes , 1972 .

[24]  J. Kunisch,et al.  MEDIAN 60 GHz wideband indoor radio channel measurements and model , 1999, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324).

[25]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[27]  Raoul LePage,et al.  Appendix Multidimensional infinitely divisible variables and processes. Part I: Stable case , 1980 .

[28]  M. O. Al-Nuaimi,et al.  Correlation bandwidth and K-factor measurements for indoor wireless radio channels at 62.4 GHz , 2001 .

[29]  Elias Masry,et al.  The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.

[30]  Philip Constantinou,et al.  Indoor channel modeling at 60 GHz for wireless LAN applications , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[31]  P. Levy Théorie des erreurs. La loi de Gauss et les lois exceptionnelles , 1924 .

[32]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[33]  J. Tukey The Future of Data Analysis , 1962 .

[34]  Laurent Clavier,et al.  Performance of DS-CDMA on the 60 GHz channel , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[35]  P. Bello Characterization of Randomly Time-Variant Linear Channels , 1963 .

[36]  Gregory D. Durgin,et al.  Space-Time Wireless Channels , 2002 .

[37]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[38]  E. Masry,et al.  On the reconstruction of the covariance of stationary Gaussian processes observed through zero-memory nonlinearities , 1978, IEEE Trans. Inf. Theory.

[39]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[40]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[41]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[42]  M. Taqqu,et al.  The asymptotic dependence structure of the linear fractional Lévy motion , 1991 .

[43]  Larry J. Greenstein,et al.  Comparison study of UWB indoor channel models , 2007, IEEE Transactions on Wireless Communications.

[44]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[45]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[46]  S. Cambanis,et al.  Linear Problems in Linear Problems in pth Order and Stable Processes , 1981 .

[47]  H. Bergström On distribution functions with a limiting stable distribution function , 1953 .

[48]  Harmonizable stable processes , 1982 .

[49]  Luis M. Correia,et al.  Characterisation of propagation in 60 GHz radio channels (invited) , 2004 .

[50]  James Kuelbs,et al.  A representation theorem for symmetric stable processes and stable measures on H , 1973 .

[51]  S. Bochner,et al.  Vorlesungen über Fouriersche Integrale , 1952 .

[52]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[53]  Stamatis Cambanis,et al.  Spectral density estimation for stationary stable processes , 1984 .

[54]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[55]  Robert C. Blattberg,et al.  A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .

[56]  Christophe Loyez,et al.  Path‐loss model of the 60‐GHz indoor radio channel , 2002 .

[57]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[58]  G. Geoffrey Booth,et al.  The Stable-Law Model of Stock Returns , 1988 .

[59]  V. Mandrekar,et al.  The spectral representation of stable processes: Harmonizability and regularity , 1990 .

[60]  Fredrik Tufvesson,et al.  A survey on vehicle-to-vehicle propagation channels , 2009, IEEE Wireless Communications.

[61]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[62]  J. Tukey Non-Parametric Estimation II. Statistically Equivalent Blocks and Tolerance Regions--The Continuous Case , 1947 .

[63]  Gennady Samorodnitsky,et al.  On Stable Markov Processes. , 1990 .

[64]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[65]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[66]  A. Khintchine Korrelationstheorie der stationären stochastischen Prozesse , 1934 .

[67]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[68]  S. Yong,et al.  TG3c channel modeling sub-committee final report , 2007 .

[69]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[70]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[71]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..

[72]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[73]  Rachid Sabre,et al.  Discrete estimation of spectral density for symmetric stable process , 2000 .

[74]  Laurent Clavier,et al.  Path delay model based on /spl alpha/-stable distribution for the 60 GHz indoor channel , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[75]  E. Parzen On Asymptotically Efficient Consistent Estimates of the Spectral Density Function of a Stationary Time Series , 1958 .

[76]  Maxime Flament,et al.  Virtual cellular networks for 60 GHz wireless infrastructure , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[77]  S Cambanis,et al.  On Prediction of Harmonizable Stable Processes. , 1985 .

[78]  Kiyosi Itô 109. Stochastic Integral , 1944 .