On the treewidth of triangulated 3-manifolds

In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how "simple" or "thin" a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology - some of them known to be computationally hard in general - that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol and of Scharlemann and Thompson, by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. In particular, we show that if a closed, orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp. pathwidth) k then the Heegaard genus of M is at most 48(k+1) (resp. 4(3k+1)).

[1]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[2]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..

[3]  Alexander Lubotzky,et al.  Variants of Kazhdan’s property for subgroups of semisimple groups , 1989 .

[4]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..

[5]  Dimitrios M. Thilikos,et al.  Treewidth for Graphs with Small Chordality , 1997, Discret. Appl. Math..

[6]  Benjamin A. Burton,et al.  The complexity of detecting taut angle structures on triangulations , 2012, SODA.

[7]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[8]  Martin Scharlemann,et al.  Thin position for 3-manifolds , 1992 .

[9]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[10]  Fanica Gavril,et al.  Some NP-complete problems on graphs , 2011, CISS 2011.

[11]  Saul Schleimer,et al.  SPHERE RECOGNITION LIES IN NP , 2004, math/0407047.

[12]  Edwin E. Moise,et al.  Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .

[13]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[14]  Bruce Kleiner,et al.  Notes on Perelman's papers , 2006 .

[15]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[16]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Dimitrios M. Thilikos,et al.  Constructive Linear Time Algorithms for Branchwidth , 1997, ICALP.

[19]  Martin Scharlemann,et al.  Lecture Notes on Generalized Heegaard Splittings , 2005, math/0504167.

[20]  Benjamin A. Burton,et al.  Computational Geometric and Algebraic Topology , 2015 .

[21]  Yota Otachi,et al.  Parameterized Complexity of the Spanning Tree Congestion Problem , 2011, Algorithmica.

[22]  J. Rubinstein,et al.  An Algorithm to Recognize the 3-Sphere , 1995 .

[23]  Abigail Thompson,et al.  THIN POSITION AND THE RECOGNITION PROBLEM FOR S3 , 1994 .

[24]  Ian Agol,et al.  The virtual Haken conjecture , 2012, 1204.2810.

[25]  Peter Orlik,et al.  On Seifert-manifolds , 1966 .

[26]  Benjamin A. Burton,et al.  Algorithms and Complexity for Turaev-Viro Invariants , 2015, ICALP.

[27]  Maria J. Serna,et al.  Constructive Linear Time Algorithms for Small Cutwidth and Carving-Width , 2000, ISAAC.

[28]  H. Short,et al.  The homeomorphism problem for closed 3–manifolds , 2012, 1211.0264.

[29]  Paul D. Seymour,et al.  Graphs with small bandwidth and cutwidth , 1989, Discret. Math..

[30]  Joseph Maher,et al.  Morse functions to graphs and topological complexity for hyperbolic $3$-manifolds , 2017, Communications in Analysis and Geometry.

[31]  Marc Lackenby,et al.  Some Conditionally Hard Problems on Links and 3-Manifolds , 2016, Discret. Comput. Geom..

[32]  Paul Wollan,et al.  Proper minor-closed families are small , 2006, J. Comb. Theory B.

[33]  W. Haken Theorie der Normalflächen , 1961 .

[34]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[35]  Joseph Maher,et al.  Morse area and Scharlemann-Thompson width for hyperbolic 3-manifolds , 2015, 1503.08521.

[36]  Raphael Zentner,et al.  Integer homology 3-spheres admit irreducible representations in SL(2,C) , 2016, Duke Mathematical Journal.

[37]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[38]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[39]  Darren D. Long,et al.  Heegaard genus and property τ for hyperbolic 3‐manifolds , 2008 .

[40]  Martin Scharlemann,et al.  Chapter 18 – Heegaard Splittings of Compact 3-Manifolds , 2000, math/0007144.

[41]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[42]  A. Hatcher,et al.  Boundary Curves of Incompressible Surfaces , 1982 .

[43]  Benjamin A. Burton,et al.  Parameterized complexity of discrete morse theory , 2013, SoCG '13.

[44]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..

[45]  Benjamin A. Burton Detecting genus in vertex links for the fast enumeration of 3-manifold triangulations , 2011, ISSAC '11.

[46]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[47]  Benjamin A. Burton,et al.  Courcelle's theorem for triangulations , 2014, J. Comb. Theory, Ser. A.

[48]  M. Lackenby Spectral geometry, link complements and surgery diagrams , 2008, 0810.5252.

[49]  Ian Agol,et al.  Small 3-Manifolds of Large Genus , 2002, math/0205091.

[50]  Sergei Matveev,et al.  Algorithmic Topology and Classification of 3-Manifolds , 2003 .

[51]  Sergei V Ivanov,et al.  The computational complexity of basic decision problems in 3-dimensional topology , 2008 .

[52]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[53]  Ephraim Korach,et al.  Tree-Width, Path-Widt, and Cutwidth , 1993, Discret. Appl. Math..

[54]  Benjamin A. Burton,et al.  Fixed Parameter Tractable Algorithms in Combinatorial Topology , 2014, COCOON.

[55]  Hans L. Bodlaender,et al.  Fixed-Parameter Tractability of Treewidth and Pathwidth , 2012, The Multivariate Algorithmic Revolution and Beyond.

[56]  Maria J. Serna,et al.  A Polynomial Time Algorithm for the Cutwidth of Bounded Degree Graphs with Small Treewidth , 2001, ESA.

[57]  B. Mohar,et al.  Graph Minors , 2009 .

[58]  William P. Thurston,et al.  Finite covers of random 3-manifolds , 2006 .

[59]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[60]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[61]  M. I. Ostrovskii Minimal congestion trees , 2004, Discret. Math..

[62]  Marc Lackenby,et al.  Finite covering spaces of 3-manifolds , 2011 .

[63]  Daniel Bienstock,et al.  On embedding graphs in trees , 1990, J. Comb. Theory, Ser. B.

[64]  Yo'av Rieck,et al.  Thin position for knots and 3-manifolds: a unified approach , 2009, 0903.5543.

[65]  Daniel Bienstock,et al.  Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.

[66]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[67]  David Gabai,et al.  Foliations and the topology of 3-manifolds , 1987 .

[68]  Marc Lackenby,et al.  The efficient certification of knottedness and Thurston norm , 2016, Advances in Mathematics.

[69]  Mladen Bestvina,et al.  Geometric group theory and 3-manifolds hand in hand: the fulfillment of Thurston’s vision , 2013 .

[70]  Maria J. Serna,et al.  Cutwidth I: A linear time fixed parameter algorithm , 2005, J. Algorithms.

[71]  Greg Kuperberg,et al.  Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization , 2015, Pacific Journal of Mathematics.

[72]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[73]  R. Ho Algebraic Topology , 2022 .

[74]  Yoav Moriah,et al.  Heegaard structures of negatively curved 3-manifolds , 1997 .

[75]  Paul Melvin,et al.  Local surgery formulas for quantum invariants and the Arf invariant , 2004, Geometry and Topology Monographs.

[76]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[77]  Greg Kuperberg,et al.  Knottedness is in NP, modulo GRH , 2011, ArXiv.

[78]  Marc Lackenby Heegaard splittings, the virtually Haken conjecture and Property (τ) , 2002 .

[79]  Jonathan Spreer,et al.  On the treewidth of triangulated 3-manifolds , 2019, J. Comput. Geom..

[80]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..