Novel candidate genes in esophageal atresia/tracheoesophageal fistula identified by exome sequencing

[1]  Richard A Marini,et al.  Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes , 2019, npj Genomic Medicine.

[2]  Sebastien M. Weyn-Vanhentenryck,et al.  Modeling RNA-Binding Protein Specificity In Vivo by Precisely Registering Protein-RNA Crosslink Sites. , 2019, Molecular cell.

[3]  Richard A Marini,et al.  Exome sequencing of 457 autism families recruited online provides evidence for novel ASD genes , 2019 .

[4]  W. Chung,et al.  De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders , 2018, PLoS genetics.

[5]  E. Ashley,et al.  Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy , 2018, bioRxiv.

[6]  Yufeng Shen,et al.  Distinct epigenomic patterns are associated with haploinsufficiency and predict risk genes of developmental disorders , 2017, Nature Communications.

[7]  Yufeng Shen,et al.  Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands , 2017, Nature Genetics.

[8]  Gene W. Yeo,et al.  A Large-Scale Binding and Functional Map of Human RNA Binding Proteins , 2017, bioRxiv.

[9]  Henning Urlaub,et al.  Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation , 2017, Cell.

[10]  Yongchun Zhang,et al.  Development and stem cells of the esophagus. , 2017, Seminars in cell & developmental biology.

[11]  Jianlin Lei,et al.  An Atomic Structure of the Human Spliceosome , 2017, Cell.

[12]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[13]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[14]  F. Gottrand,et al.  ESPGHAN-NASPGHAN Guidelines for the Evaluation and Treatment of Gastrointestinal and Nutritional Complications in Children With Esophageal Atresia-Tracheoesophageal Fistula. , 2016, Journal of pediatric gastroenterology and nutrition.

[15]  Trevor Hastie,et al.  REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. , 2016, American journal of human genetics.

[16]  K. Hochedlinger,et al.  Sox2 Suppresses Gastric Tumorigenesis in Mice. , 2016, Cell reports.

[17]  Stephan J Sanders,et al.  De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies , 2015, Science.

[18]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[19]  C. Behrends,et al.  RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy , 2014, Autophagy.

[20]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[21]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[22]  J. Behrens,et al.  Adenomatous polyposis coli (APC) membrane recruitment 3, a member of the APC membrane recruitment family of APC‐binding proteins, is a positive regulator of Wnt–β‐catenin signalling , 2014, The FEBS journal.

[23]  Kathryn Roeder,et al.  Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes , 2013, PLoS genetics.

[24]  W. Reardon,et al.  Oto-facial syndrome and esophageal atresia, intellectual disability and zygomatic anomalies - expanding the phenotypes associated with EFTUD2 mutations , 2013, Orphanet Journal of Rare Diseases.

[25]  A. Al-Salem,et al.  Morbidity and mortality in esophageal atresia and tracheoesophageal fistula: a 20-year review , 2013 .

[26]  A. Bauer,et al.  Fine‐tuning BMP7 signalling in adipogenesis by UBE2O/E2‐230K‐mediated monoubiquitination of SMAD6 , 2013, The EMBO journal.

[27]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[28]  A. Munnich,et al.  EFTUD2 haploinsufficiency leads to syndromic oesophageal atresia , 2012, Journal of Medical Genetics.

[29]  E. Banks,et al.  Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. , 2012, American journal of human genetics.

[30]  A. C. Simões e Silva,et al.  Current knowledge on esophageal atresia. , 2012, World journal of gastroenterology.

[31]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[32]  H. Lovvorn,et al.  Mutational analysis of NOG in esophageal atresia and tracheoesophageal fistula patients , 2012, Pediatric Surgery International.

[33]  M. Nöthen,et al.  Nine new twin pairs with esophageal atresia: a review of the literature and performance of a twin study of the disorder. , 2012, Birth defects research. Part A, Clinical and molecular teratology.

[34]  D. Horn,et al.  Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly. , 2012, American journal of human genetics.

[35]  Suzanna Lewis,et al.  Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium , 2011, Briefings Bioinform..

[36]  C. Sasakawa,et al.  A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. , 2011, Cell host & microbe.

[37]  S. Lyonnet,et al.  Genetic Factors in Isolated and Syndromic Esophageal Atresia , 2011, Journal of pediatric gastroenterology and nutrition.

[38]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[39]  Avi Ma'ayan,et al.  ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments , 2010, Bioinform..

[40]  B. Gelb,et al.  Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. , 2010, American journal of human genetics.

[41]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[42]  B. Hogan,et al.  Preparing for the first breath: genetic and cellular mechanisms in lung development. , 2010, Developmental cell.

[43]  C. Shaw-Smith Genetic factors in esophageal atresia, tracheo-esophageal fistula and the VACTERL association: Roles for FOXF1 and the 16q24.1 FOX transcription factor gene cluster, and review of the literature , 2010, European journal of medical genetics.

[44]  C. Stoll,et al.  Associated malformations in patients with esophageal atresia. , 2009, European journal of medical genetics.

[45]  A. Zorn,et al.  Interactions between SOX factors and Wnt/β‐catenin signaling in development and disease , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[46]  B. Hogan,et al.  Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm , 2007, Development.

[47]  D. Tibboel,et al.  Chromosomal anomalies in the aetiology of oesophageal atresia and tracheo-oesophageal fistula. , 2007, European journal of medical genetics.

[48]  C. Shaw-Smith Oesophageal atresia, tracheo-oesophageal fistula, and the VACTERL association: review of genetics and epidemiology , 2005, Journal of Medical Genetics.

[49]  S. Antonarakis,et al.  Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP , 2001, Nature Cell Biology.

[50]  K Nakayama,et al.  Identification and Characterization of Novel Clathrin Adaptor-related Proteins* , 1998, The Journal of Biological Chemistry.

[51]  M. Mooseker,et al.  Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding , 1987, The Journal of cell biology.

[52]  I. Maroszyńska,et al.  Isolated esophageal atresia in both premature twins , 2015 .