The inverse scattering transform for multidimensional (2+1) problems

Page 1 In t roduc t ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 1.1 F ind a m e t h o d for genera t ing par t icu la r solut ions of t h e given equa t ion . . . . . . 140 1.2 F ind a ' m e t h o d for solving general initial value p rob lems . . . . . . . . . . . . . . . 140 2 Direct l inear izat ion in 1 + 1 and 2 + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3 Review of t he ma i n eigenvalue p rob lems re la ted to t he inverse sca t t e r ing t r a n s f o r m in 1 + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4 R e m a r k s on R i e m a n n H i l b e r t b o u n d a r y value problems . . . . . . . . . . . . . . . . . . 146 4.1 Classical R i e m a n n H i i b e r t p roblems for HSlder func t ions . . . . . . . . . . . . . . 146 4.1.1 Scalar homogeneous R i e m a n n H i l b e r t p roblem . . . . . . . . . . . . . . . . . 147 4.1.2 Vector homogeneous R i e m a n n H i l b e r t p rob lems . . . . . . . . . . . . . . . . 148 4.1.3 A note on the h is tory of R i e m a n n H i l b e r t p rob lems . . . . . . . . . . . . . . 150 4.2 Some resul ts of Kre in and Gohberg . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.2.1 Scalar fac tor iza t ion prob lem . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 4.2.2 A vector R i e m a n n H i l b e r t p rob lem wi th all i ts indices posit ive . . . . . . . . 152 4.2.3 A ma t r i x fac tor iza t ion t heo rem . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.2.4 A the o rem abou t indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.3 R i e m a n n H i l b e r t p roblems appear ing in inverse sca t t e r ing t r a n s f o r m s . . . . . . . 154

[1]  Athanassios S. Fokas,et al.  On the inverse scattering transform of multidimensional nonlinear equations related to first‐order systems in the plane , 1984 .

[2]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[3]  A. Fordy,et al.  Integrable nonlinear Klein-Gordon equations and Toda lattices , 1980 .

[4]  On a Bäcklund transformation and scattering problem for the modified intermediate long wave equation , 1984 .

[5]  Carlos Tomei,et al.  Inverse scattering and the boussinesq equation , 1982 .

[6]  Benno Fuchssteiner,et al.  Application of hereditary symmetries to nonlinear evolution equations , 1979 .

[7]  R. Rosales Exact solutions of some nonlinear evolution equations , 1978 .

[8]  Hsing‐Hen Chen A Bäcklund transformation in two dimensions , 1975 .

[9]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[10]  Peter J. Olver,et al.  Evolution equations possessing infinitely many symmetries , 1977 .

[11]  A. Fokas,et al.  Linearization of the Korteweg-de Vries and Painlevé II Equations , 1981 .

[12]  M. Kruskal,et al.  A two-parameter Miura transformation of the Benjamin-Ono equation , 1979 .

[13]  K. Stewartson,et al.  On three-dimensional packets of surface waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[15]  V. Zakharov,et al.  Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method , 1978 .

[16]  Allan P. Fordy,et al.  Factorization of operators.II , 1981 .

[17]  B. Kadomtsev,et al.  On the Stability of Solitary Waves in Weakly Dispersing Media , 1970 .

[18]  A. Fokas INVERSE SCATTERING OF FIRST ORDER SYSTEMS IN THE PLANE RELATED TO NONLINEAR MULTIDIMENSIONAL EQUATIONS , 1983 .

[19]  Athanassios S. Fokas,et al.  ON THE INVERSE SCATTERING AND DIRECT LINEARIZING TRANSFORMS FOR THE KADOMTSEV-PETVIASHVILI EQUATION , 1983 .

[20]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[21]  M. Wadati,et al.  The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .

[22]  Josip Plemelj Problems in the Sense of Riemann and Klein , 1964 .

[23]  F. J. Ernst,et al.  A homogeneous Hilbert problem for the Kinnersley–Chitre transformations , 1980 .

[24]  A. Fokas,et al.  The direct linearizing transform and the Benjamin-Ono equation , 1983 .

[25]  Athanassios S. Fokas,et al.  A symmetry approach to exactly solvable evolution equations , 1980 .

[26]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[27]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[28]  M. Ablowitz,et al.  Nonlinear-evolution equations of physical significance , 1973 .

[29]  Athanassios S. Fokas,et al.  On a unified approach to transformations and elementary solutions of Painlevé equations , 1982 .

[30]  David J. Kaup,et al.  The inverse scattering solution for the full three dimensional three- wave resonant interaction , 1980 .

[31]  Roger G. Newton,et al.  Inverse scattering. I. One dimension , 1980 .

[32]  Joel H. Ferziger,et al.  Systems of singular integral equations , 1967 .

[33]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[34]  N. Erugin,et al.  Linear systems of ordinary differential equations , 1966 .

[35]  V. Zakharov,et al.  Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II , 1979 .

[36]  Athanassios S. Fokas,et al.  On the structure of symplectic operators and hereditary symmetries , 1980 .

[37]  M. Atiyah,et al.  Construction of Instantons , 1978 .

[38]  B. Fuchssteiner,et al.  Explicit formulas for symmetries and conservation laws of the Kadomtsev-Petviashvili equation , 1982 .

[39]  Athanassios S. Fokas,et al.  On the Inverse Scattering of the Time-Dependent Schrödinger Equation and the Associated Kadomtsev-Petviashvili (I) Equation , 1983 .

[40]  Francesco Calogero,et al.  Nonlinear evolution equations solvable by the inverse spectral transform , 1978 .

[41]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[42]  R. L. Anderson,et al.  On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for Hamiltonian systems , 1982 .

[43]  Junkichi Satsuma,et al.  N-Soliton Solution of the Two-Dimensional Korteweg-deVries Equation , 1976 .

[44]  L. Alonso,et al.  Schrödinger spectral problems with energy–dependent potentials as sources of nonlinear Hamiltonian evolution equations , 1980 .

[45]  Studies on Holonomic Quantum Fields. 1. , 1977 .

[46]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[47]  Vladimir E. Zakharov,et al.  Resonant interaction of wave packets in nonlinear media , 1973 .

[48]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[49]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[50]  B. Konopelchenko The two-dimensional matrix spectral problem: General structure of the integrable equations and their Bäcklund transformations , 1981 .

[51]  M. Ablowitz,et al.  Nonlinear Evolution Equations-Two and Three Dimensions , 1975 .

[52]  M. Ablowitz,et al.  Nonlinear Intermediate Long-Wave Equation: Analysis and Method of Solution , 1981 .

[53]  A. Fokas,et al.  Bäcklund transformations for hereditary symmetries , 1981 .

[54]  Relations among generalized Korteweg–deVries systems , 1979 .

[55]  F. Smithies,et al.  Singular Integral Equations , 1955, The Mathematical Gazette.

[56]  A. Fokas,et al.  The hierarchy of the Benjamin-Ono equation , 1981 .

[57]  G. Wilson,et al.  Modifying Lax equations and the second Hamiltonian structure , 1980 .

[58]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[59]  F. D. Gakhov RIEMANN BOUNDARY VALUE PROBLEM , 1966 .

[60]  B. Konopelchenko Transformation properties of the integrable evolution equations , 1981 .

[61]  M. Wadati,et al.  The Modified Korteweg-de Vries Equation , 1973 .

[62]  Antonio Degasperis,et al.  Nonlinear evolution equations solvable by the inverse spectral transform.—I , 1976 .

[63]  On a generalized Hilbert problem , 1982 .

[64]  S. G. Mikhlin,et al.  Integral equations―a reference text , 1975 .

[65]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[66]  S. Manakov,et al.  The inverse scattering transform for the time-dependent Schrodinger equation and Kadomtsev-Petviashvili equation , 1981 .

[67]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[68]  C. S. Gardner,et al.  The Korteweg-de Vries equation as a Hamiltonian System , 1971 .

[69]  G. Tu A commutativity theorem of partial differential operators , 1980 .

[70]  Athanassios S. Fokas,et al.  The Inverse Scattering Transform for the Benjamin‐Ono Equation—A Pivot to Multidimensional Problems , 1983 .

[71]  Akira Nakamura,et al.  A Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. I. Exact Two-Periodic Wave Solution , 1979 .

[72]  D. J. Kaup,et al.  The Three-Wave Interaction-A Nondispersive Phenomenon , 1976 .

[73]  I. Gel'fand,et al.  The resolvent and Hamiltonian systems , 1977 .

[74]  M. Jaulent,et al.  Inverse scattering problems in absorbing media , 1976 .

[75]  A. Newell The general structure of integrable evolution equations , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[76]  Masaki Kashiwara,et al.  The $\tau$ function of the Kadomtsev-Petviashvili equation transformation groups for soliton equations, I , 1981 .

[77]  R. S. Ward,et al.  Instantons and algebraic geometry , 1977 .

[78]  P. Caudrey The inverse problem for a general N × N spectral equation , 1982 .

[79]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[80]  A. Galindo,et al.  Conserved densities for nonlinear evolution equations. I. Even order case , 1979 .