Tribological-Behaviour-Controlled Direct-Current Triboelectric Nanogenerator Based on the Tribovoltaic Effect Under High Contact Pressure

[1]  Chi Zhang,et al.  Semiconductor Contact‐Electrification‐Dominated Tribovoltaic Effect for Ultrahigh Power Generation , 2022, Advanced materials.

[2]  Zibiao Li,et al.  Control methods and applications of interface contact electrification of triboelectric nanogenerators: a review , 2022, Materials Research Letters.

[3]  Huamin Li,et al.  Mechanism of In-Plane and Out-of-Plane Tribovoltaic Direct-Current Transport with a Metal/Oxide/Metal Dynamic Heterojunction. , 2022, ACS applied materials & interfaces.

[4]  Shusheng Xu,et al.  2D SiP Nanoflakes as New High-performance Lubricant Additive for Steel/Steel Sliding Contact , 2022, Tribology International.

[5]  Zhong Lin Wang,et al.  p-n Junction Based Direct-Current Triboelectric Nanogenerator by Conjunction of Tribovoltaic Effect and Photovoltaic Effect. , 2021, Nano letters.

[6]  F. Zhou,et al.  Triboelectrification of interface controlled by photothermal materials based on electron transfer , 2021 .

[7]  Wanlin Guo,et al.  Control of triboelectricity by mechanoluminescence in ZnS/Mn-containing polymer films , 2021, Nano Energy.

[8]  Chi Zhang,et al.  Investigating the Effect of Nanoscale Triboelectrification on Nanofriction in Insulators , 2021, Nano Energy.

[9]  Jianbin Luo,et al.  Hexadecane-containing sandwich structure based triboelectric nanogenerator with remarkable performance enhancement , 2021 .

[10]  F. Zhou,et al.  Controlling the tribological behavior at the friction interface by regulating the triboelectrification , 2021 .

[11]  Sangmin Lee,et al.  Nonpolar Liquid Lubricant Submerged Triboelectric Nanogenerator for Current Amplification via Direct Electron Flow , 2021, Advanced Energy Materials.

[12]  Jun Liu,et al.  Semiconductor-based dynamic heterojunctions as an emerging strategy for high direct-current mechanical energy harvesting , 2021 .

[13]  Zhong Lin Wang,et al.  Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface , 2021 .

[14]  Jinhui Nie,et al.  Microscale Schottky superlubric generator with high direct-current density and ultralong life , 2021, Nature Communications.

[15]  A. Neville,et al.  An investigation into the influence of tribological parameters on the operation of sliding triboelectric nanogenerators , 2021 .

[16]  Y. Gan,et al.  The Influence of Sliding Speed on the Friction Behavior of Silica Surface , 2021, ACS omega.

[17]  H. Olin,et al.  Direct Current Triboelectric Nanogenerators , 2020, Advanced Energy Materials.

[18]  Zhong Lin Wang,et al.  Simultaneously Enhancing Power Density and Durability of Sliding‐Mode Triboelectric Nanogenerator via Interface Liquid Lubrication , 2020, Advanced Energy Materials.

[19]  Sam Zhang Materials for Energy , 2020 .

[20]  Zhong Lin Wang,et al.  The tribovoltaic effect and electron transfer at a liquid-semiconductor interface , 2020 .

[21]  Z. Zhang,et al.  Tribo-thermoelectric and tribovoltaic coupling effect at metal-semiconductor interface , 2020 .

[22]  J. Gooding,et al.  Harnessing silicon facet-dependent conductivity to enhance the direct-current produced by a sliding Schottky diode triboelectric nanogenerator , 2020 .

[23]  Xutao Yu,et al.  Interfacial Built-In Electric Field-Driven Direct Current Generator Based on Dynamic Silicon Homojunction , 2020, Research.

[24]  Hong Chen,et al.  Graphene/Semiconductor Heterostructure Wireless Energy Harvester through Hot Electron Excitation , 2020, Research.

[25]  Jianping Meng,et al.  Schottky‐Contacted Nanowire Sensors , 2020, Advanced materials.

[26]  Jian Wu,et al.  Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication , 2020, Nano Energy.

[27]  Hanqing Li,et al.  Effect of humidity on tribological properties and electrification performance of sliding-mode triboelectric nanogenerator , 2020 .

[28]  Zhong Lin Wang,et al.  Scanning Probing of the Tribovoltaic Effect at the Sliding Interface of Two Semiconductors , 2020, Advanced materials.

[29]  Liang Xu,et al.  Oleic-acid enhanced triboelectric nanogenerator with high output performance and wear resistance , 2020 .

[30]  D. Diao,et al.  Current density effect on current-carrying friction of amorphous carbon film , 2020, Carbon.

[31]  Di Liu,et al.  Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor , 2019 .

[32]  Xutao Yu,et al.  Tunable Dynamic Black Phosphorus/Insulator/Si Heterojunction Direct-Current Generator Based on the Hot Electron Transport , 2019, Research.

[33]  Erping Li,et al.  Surface States Enhanced Dynamic Schottky Diode Generator with Extremely High Power Density Over 1000 W m−2 , 2019, Advanced science.

[34]  T. Thundat,et al.  Separation and Quantum Tunneling of Photo-generated Carriers Using a Tribo-Induced Field , 2019, Matter.

[35]  Aurelia Chi Wang,et al.  On the origin of contact-electrification , 2019, Materials Today.

[36]  Shisheng Lin,et al.  Direct-Current Generator Based on Dynamic PN Junctions with the Designed Voltage Output , 2019, iScience.

[37]  B. Baytekin,et al.  Minimizing friction, wear, and energy losses by eliminating contact charging , 2018, Science Advances.

[38]  T. Thundat,et al.  Interfacial friction-induced electronic excitation mechanism for tribo-tunneling current generation , 2018, Materials Horizons.

[39]  Yanfei Yan,et al.  A High Current Density Direct‐Current Generator Based on a Moving van der Waals Schottky Diode , 2018, Advanced materials.

[40]  Faheem Khan,et al.  Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers , 2018, Nature Nanotechnology.

[41]  K. Holmberg,et al.  Influence of tribology on global energy consumption, costs and emissions , 2017 .

[42]  Kishore,et al.  Dry sliding wear of epoxy/cenosphere syntactic foams , 2015 .

[43]  J. Krim David Adler Lectureship Award Talk: Friction and energy dissipation mechanisms in adsorbed , 2015 .

[44]  A. Erdemir,et al.  Bipolar tribocharging signal during friction force fluctuations at metal-insulator interfaces. , 2014, Angewandte Chemie.

[45]  S. Syahrullail,et al.  Lubrication performance of double fraction palm olein using pin-on-disk tribotester , 2013 .

[46]  T. Burgo,et al.  Friction coefficient dependence on electrostatic tribocharging , 2013, Scientific Reports.

[47]  A. K. Tieu,et al.  Tribological performance of aqueous copolymer lubricant in loaded contact with Si and coated Ti film , 2013 .

[48]  Kevin T. Turner,et al.  Friction laws at the nanoscale , 2009, Nature.

[49]  D. F. Ogletree,et al.  Electronic contribution to friction on GaAs: An atomic force microscope study , 2008 .

[50]  Xiang Li,et al.  Effect of lubricant on tribo-induced phase transformation of Si , 2006 .

[51]  S. Putterman,et al.  Correlation between charge transfer and stick-slip friction at a metal-insulator interface , 2000, Physical review letters.

[52]  K. Nakayama Tribocharging and friction in insulators in ambient air , 1996 .

[53]  Chi Zhang,et al.  Achieving Ultrahigh Direct-Current Voltage of 130 V by Semiconductor Heterojunction Power Generation Based on Tribovoltaic Effect , 2022, Energy & Environmental Science.

[54]  Daoai Wang,et al.  Influence of Interface liquid lubrication on triboelectrification of point contact friction pair , 2022 .