Relative H-atom and O-atom concentration measurements in a laminar, methane/air diffusion flame

[1]  R. Teets,et al.  Coherent anti-Stokes Raman spectra of oxygen atoms in flames. , 1981, Optics letters.

[2]  J. Bechtel,et al.  Spontaneous Raman scattering by ground-state oxygen atoms. , 1981, Optics letters.

[3]  Kermit C. Smyth,et al.  Resonantly enhanced two‐photon photoionization of NO in an atmospheric flame , 1982 .

[4]  W. Mallard,et al.  The observation of laser-induced visible fluorescence in sooting diffusion flames , 1982 .

[5]  Sune Svanberg,et al.  Two-photon excitation of atomic oxygen in a flame , 1982 .

[6]  E. Grant,et al.  Detection of nascent no in a methane/air flame by multiphoton ionization , 1982 .

[7]  J. Goldsmith Resonant multiphoton optogalvanic detection of atomic hydrogen in flames. , 1982, Optics letters.

[8]  J. Goldsmith,et al.  Resonant multiphoton optogalvanic detection of atomic oxygen in flames , 1983 .

[9]  N. Laurendeau,et al.  Two-photon-excited fluorescence measurement of hydrogen atoms in flames. , 1983, Optics letters.

[10]  T. Cool,et al.  Detection of atomic hydrogen in flames by resonance four-photon ionization at 365 nm , 1983 .

[11]  A. Miziolek,et al.  Multiphoton photochemical and collisional effects during oxygen-atom flame detection. , 1984, Optics letters.

[12]  G. Turk,et al.  Signal detection of pulsed laser-enhanced ionization , 1984 .

[13]  H. Hertz,et al.  Imaging laser-induced fluorescence of oxygen atoms in a flame. , 1984, Applied optics.

[14]  A. Schawlow,et al.  Three-photon-excited fluorescence detection of atomic hydrogen in an atmospheric-pressure flame. , 1984, Optics letters.

[15]  K. Smyth,et al.  Detection of the methyl radical in a methane/air diffusion flame by multiphoton ionization spectroscopy , 1985 .

[16]  J. Goldsmith,et al.  Imaging of atomic hydrogen in flames with two-step saturated fluorescence detection. , 1985, Applied optics.

[17]  Robert J. Santoro,et al.  Soot inception in a methane/air diffusion flame as characterized by detailed species profiles , 1985 .

[18]  J. Goldsmith Two-step saturated fluorescence detection of atomic hydrogen in flames. , 1985, Optics letters.

[19]  N. Laurendeau,et al.  Quenching-independent fluorescence measurements of atomic hydrogen with photoionization controlled-loss spectroscopy. , 1986, Optics letters.

[20]  T. Just,et al.  H and O atom detection for combustion applications: study of quenching and laser photolysis effects , 1986 .

[21]  J. Goldsmith,et al.  Photochemical effects in 205-nm, two-photon-excited fluorescence detection of atomic hydrogen in flames. , 1986, Optics letters.

[22]  Bamford,et al.  Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen. , 1986, Physical review. A, General physics.

[23]  Robert J. Kee,et al.  The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism , 1987 .

[24]  J. Goldsmith,et al.  Photochemical effects in two-photon-excited fluorescence detection of atomic oxygen in flames. , 1987, Applied optics.

[25]  Dyer,et al.  Single-frequency laser measurements of two-photon cross sections and Doppler-free spectra for atomic oxygen. , 1987, Physical review. A, General physics.

[26]  N. Laurendeau,et al.  Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H(2)/O(2)/N(2) flat flames with photoionization controlled-loss spectroscopy. , 1987, Applied optics.

[27]  H. Miller,et al.  Methyl Radical Concentrations and Production Rates in a Faminar Methane/Air Diffusion Flame , 1987 .

[28]  David E. Keyes,et al.  A Comparison Between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Methane-Air Diffusion Flame , 1987 .

[29]  P. A. Bonczyk Suppression of soot in flames by alkaline-earth and other metal additives , 1988 .

[30]  U. Meier,et al.  Determination of absolute H atom concentrations in low-pressure flames by two-photon laser-excited fluorescence , 1988 .

[31]  Ming T. Wu,et al.  One‐ and two‐color multiphoton ionization of argon , 1988 .

[32]  N. Laurendeau,et al.  Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames , 1988 .

[33]  H. F. Calcote,et al.  Are ions important in soot formation , 1988 .

[34]  U. Meier,et al.  Quenching of two-photon-excited H(3s, 3d) and O(3p 3P2,1,0) atoms by rare gases and small molecules , 1988 .

[35]  S. Downey,et al.  Saturation of three-photon ionization of atomic hydrogen and deuterium at 243 nm. , 1989, Optics letters.

[36]  M Aldén,et al.  Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases. , 1989, Optics letters.

[37]  M. J. Dyer,et al.  Doppler-free laser-induced fluorescence of oxygen atoms in an atmospheric-pressure flame. , 1989, Optics letters.

[38]  J. Jeffries,et al.  Laser-induced fluorescence of O(3p(3)P), O(2), and NO near 226 nm: photolytic interferences and simultaneous excitation in flames. , 1989, Optics letters.

[39]  John E. M. Goldsmith,et al.  Two-Photon-Excited Stimulated Emission from Atomic Hydrogen in Flames , 1989, Laser Applications to Chemical Analysis.

[40]  K. Smyth,et al.  Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO , 1989 .

[41]  J. Goldsmith Photochemical effects in 243-nm two-photon excitation of atomic hydrogen in flames. , 1988, Applied optics.

[42]  Robert J. Kee,et al.  On reduced mechanisms for methaneair combustion in nonpremixed flames , 1990 .

[43]  K. Smyth,et al.  Signal detection efficiency in multiphoton ionization flame measurements. , 1990, Applied optics.

[44]  Anthony P. Hamins,et al.  Concentration measurements of OH· and equilibrium analysis in a laminar methane-air diffusion flame , 1990 .