Spectrum of sizes for perfect burst deletion-correcting codes

Perfect deletion-correcting codes of the same length over the same alphabet can have different sizes. The interesting problem of determining the possible sizes of perfect deletion-correcting codes has previously been studied. In this paper, we study the corresponding problem for burst deletion-correcting codes. We completely determine the spectrum of sizes for perfect burst deletion-correcting codes for certain classes of parameters and also construct new classes of perfect deletion-correcting codes.

[1]  Khaled A. S. Abdel-Ghaffar,et al.  Codes for correcting three or more adjacent deletions or insertions , 2014, 2014 IEEE International Symposium on Information Theory.

[2]  Gennian Ge,et al.  On group-divisible designs with block size four and group-type 6um1 , 2004, Discret. Math..

[3]  Lie Zhu,et al.  Some recent developments on BIBDs and related designs , 1993, Discret. Math..

[4]  Haim Hanani,et al.  Balanced incomplete block designs and related designs , 1975, Discret. Math..

[5]  Jeffrey D. Ullman,et al.  Near-optimal, single-synchronization-error-correcting code , 1966, IEEE Trans. Inf. Theory.

[6]  Patrick A. H. Bours,et al.  Construction of fixed-length insertion/deletion correcting runlength-limited codes , 1994, IEEE Trans. Inf. Theory.

[7]  J. Yin,et al.  Constructions for Perfect 5-Deletion-Correcting Codes of Length$7$ , 2006, IEEE Transactions on Information Theory.

[8]  David Zuckerman,et al.  Asymptotically good codes correcting insertions, deletions, and transpositions , 1997, SODA '97.

[9]  Rolf S. Rees,et al.  Two new direct product-type constructions for resolvable group-divisible designs , 1993 .

[10]  Gennian Ge,et al.  Spectrum of Sizes for Perfect Deletion-Correcting Codes , 2010, SIAM J. Discret. Math..

[11]  Jennifer Seberry,et al.  All DBIBDs with block size four exist , 1980 .

[12]  Saburo Tazaki,et al.  Assessment on characteristics of b‐adjacent error‐correcting code , 1985 .

[13]  Lorenzo Calabi,et al.  Some General Results of Coding Theory with Applications to the Study of Codes for the Correction of Synchronization Errors , 1969, Inf. Control..

[14]  Frederick F. Sellers,et al.  Bit loss and gain correction code , 1962, IRE Trans. Inf. Theory.

[15]  Andries E. Brouwer,et al.  Optimal Packings of K4's into a Kn , 1979, J. Comb. Theory A.

[16]  Dean G. Hoffman,et al.  A New Class of Group Divisible Designs with Block Size Three , 1992, J. Comb. Theory, Ser. A.

[17]  Jianmin Wang Some combinatorial constructions for optimal perfect deletion-correcting codes , 2008, Des. Codes Cryptogr..

[18]  Jeffrey D. Ullman,et al.  On the capabilities of codes to correct synchronization errors , 1967, IEEE Trans. Inf. Theory.

[19]  Lara Dolecek,et al.  Using Reed–Muller ${\hbox{RM}}\,(1, m)$ Codes Over Channels With Synchronization and Substitution Errors , 2007, IEEE Transactions on Information Theory.

[20]  Alexander Schrijver,et al.  Group divisible designs with block-size four , 2006, Discret. Math..

[21]  C. Palmer,et al.  Units of knowledge in music performance. , 1993, Journal of experimental psychology. Learning, memory, and cognition.

[22]  Reihaneh Safavi-Naini,et al.  Deletion Correcting Using Generalized Reed-Solomon Codes , 2004 .

[23]  Lorenzo Calabi,et al.  A family of codes for the correction of substitution and synchronization errors , 1969, IEEE Trans. Inf. Theory.

[24]  Edward A. Ratzer Marker codes for channels with insertions and deletions , 2005, Ann. des Télécommunications.

[25]  Lijun Ji,et al.  Existence of T*(3, 4,v)‐codes , 2005 .

[26]  Jack K. Wolf,et al.  A Systematic (12, 8) Code for Correcting Single Errors and Detecting Adjacent Errors , 1990, IEEE Trans. Computers.

[27]  Ahmed M. Assaf,et al.  Directed packing and covering designs with block size four , 2001, Discret. Math..

[28]  Nabil Shalaby,et al.  Existence of Perfect 4-Deletion-Correcting Codes with Length Six , 2002, Des. Codes Cryptogr..

[29]  Krister M. Swenson,et al.  Genomic Distances under Deletions and Insertions , 2003, COCOON.

[30]  Charles J. Colbourn,et al.  An Optimal Algorithm for Directing Triple Systems Using Eulerian Circuits , 1985 .

[31]  G. Tenengolts,et al.  Nonbinary codes, correcting single deletion or insertion , 1984, IEEE Trans. Inf. Theory.

[32]  Reihaneh Safavi-Naini,et al.  Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Dimension $2$ Over Prime Fields , 2007, IEEE Transactions on Information Theory.

[33]  David J. C. MacKay,et al.  Reliable communication over channels with insertions, deletions, and substitutions , 2001, IEEE Trans. Inf. Theory.

[34]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[35]  David B. Skillicorn,et al.  Directed packings of pairs into quadruples , 1982 .

[36]  Dongvu Tonien,et al.  Construction of deletion correcting codes using generalized Reed–Solomon codes and their subcodes , 2007, Des. Codes Cryptogr..

[37]  Gennian Ge,et al.  Group divisible designs with block size four and group type gum1 for small g , 2004, Discret. Math..

[38]  N.J.A. Sloane,et al.  On Single-Deletion-Correcting Codes , 2002, math/0207197.

[39]  D. C. Bossen b-adjacent error correction , 1970 .

[40]  A. Mahmoodi,et al.  Existence of Perfect 3-Deletion-Correcting Codes , 1998, Des. Codes Cryptogr..

[41]  Ying Miao,et al.  Directed B(K, 1;v) withK = {4, 5} and {4, 6} related to deletion/insertion-correcting codes , 2001 .

[42]  Patrick A. H. Bours On the construction of perfect deletion-correcting codes using design theory , 1995, Des. Codes Cryptogr..

[43]  Daniel Cullina,et al.  An improvement to Levenshtein's upper bound on the cardinality of deletion correcting codes , 2013, ISIT.

[44]  Alan Hartman,et al.  Resolvable group divisible designs with block size 3 , 1989, Discret. Math..

[45]  Daniel Cullina,et al.  An Improvement to Levenshtein's Upper Bound on the Cardinality of Deletion Correcting Codes , 2013, IEEE Transactions on Information Theory.

[46]  Luke Windsor,et al.  Data processing in music performance research: Using structural information to improve score-performance matching , 2000, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[47]  Hendrik C. Ferreira,et al.  A note on double insertion/deletion correcting codes , 2003, IEEE Trans. Inf. Theory.

[48]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[49]  Andreas Klein,et al.  On perfect deletion‐correcting codes , 2004 .

[50]  C. Colbourn,et al.  Mutually orthogonal latin squares (MOLS) , 2006 .

[51]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[52]  Jianxing Yin,et al.  A Combinatorial Construction for Perfect Deletion-Correcting Codes , 2001, Des. Codes Cryptogr..

[53]  Hyun Kwang Kim,et al.  Optimal Single Deletion Correcting Code of Length Four Over an Alphabet of Even Size , 2010, IEEE Transactions on Information Theory.

[54]  Paul H. Siegel,et al.  Lee-metric BCH codes and their application to constrained and partial-response channels , 1994, IEEE Trans. Inf. Theory.

[55]  N. S. Mendelsohn,et al.  Directed Triple Systems , 1973, J. Comb. Theory, Ser. A.