General and specific interactions of the phospholipid bilayer with P-type ATPases

[1]  Ligong Chen,et al.  The solute carrier transporters and the brain: Physiological and pharmacological implications , 2019, Asian journal of pharmaceutical sciences.

[2]  R. Norton,et al.  Editorial: Special issue of Biophysical Reviews dedicated to the joint 10th Asian Biophysics Association Symposium and 42nd Australian Society for Biophysics Meeting, Melbourne, Australia, December 2–6, 2018 , 2019, Biophysical Reviews.

[3]  T. Allen,et al.  Cholesterol depletion inhibits Na+,K+-ATPase activity in a near-native membrane environment , 2019, The Journal of Biological Chemistry.

[4]  H. Mayan,et al.  Renal Mg handling, FXYD2 and the central role of the Na,K‐ATPase , 2018, Physiological reports.

[5]  V. Dubey,et al.  Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes. , 2018, Biochimica et biophysica acta. Biomembranes.

[6]  Hiroshi Suzuki,et al.  Crystal structures of the gastric proton pump , 2018, Nature.

[7]  M. Habeck,et al.  Specific phospholipid binding to Na,K-ATPase at two distinct sites , 2017, Proceedings of the National Academy of Sciences.

[8]  R. Clarke,et al.  Stimulation of Na+,K+-ATPase Activity as a Possible Driving Force in Cholesterol Evolution , 2016, The Journal of Membrane Biology.

[9]  R. Clarke Dipole-Potential-Mediated Effects on Ion Pump Kinetics. , 2015, Biophysical journal.

[10]  M. Habeck,et al.  General and specific lipid-protein interactions in Na,K-ATPase. , 2015, Biochimica et biophysica acta.

[11]  M. Habeck,et al.  Stimulation, Inhibition, or Stabilization of Na,K-ATPase Caused by Specific Lipid Interactions at Distinct Sites , 2014, The Journal of Biological Chemistry.

[12]  P. Nissen,et al.  Comparing crystal structures of Ca2+‐ATPase in the presence of different lipids , 2014, The FEBS journal.

[13]  P. Nissen,et al.  SERCA mutant E309Q binds two Ca2+ ions but adopts a catalytically incompetent conformation , 2013, The EMBO journal.

[14]  C. Toyoshima,et al.  Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state , 2013, Nature.

[15]  T. Graham,et al.  Auto-inhibition of Drs2p, a Yeast Phospholipid Flippase, by Its Carboxyl-terminal Tail* , 2013, The Journal of Biological Chemistry.

[16]  C. Toyoshima,et al.  Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state , 2013, Nature.

[17]  M. Habeck,et al.  Neutral Phospholipids Stimulate Na,K-ATPase Activity , 2013, The Journal of Biological Chemistry.

[18]  G. Veglia,et al.  Activating and deactivating roles of lipid bilayers on the Ca(2+)-ATPase/phospholamban complex. , 2011, Biochemistry.

[19]  P. Nissen,et al.  P-type ATPases at a glance , 2011, Journal of Cell Science.

[20]  P. Nissen,et al.  Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. , 2011, Nature communications.

[21]  Y. Peleg,et al.  FXYD Proteins Stabilize Na,K-ATPase , 2011, The Journal of Biological Chemistry.

[22]  P. Nissen,et al.  In and out of the cation pumps: P-type ATPase structure revisited. , 2010, Current opinion in structural biology.

[23]  M. Palmgren,et al.  A Novel Mechanism of P-type ATPase Autoinhibition Involving Both Termini of the Protein , 2010, The Journal of Biological Chemistry.

[24]  C. Toyoshima,et al.  Crystal structure of the sodium–potassium pump at 2.4 Å resolution , 2009, Nature.

[25]  F. Cornelius Cholesterol-dependent interaction of polyunsaturated phospholipids with Na,K-ATPase. , 2008, Biochemistry.

[26]  L. Masterson,et al.  Structural and Dynamic Basis of Phospholamban and Sarcolipin Inhibition of Ca2+-ATPase† , 2008 .

[27]  P. Nissen,et al.  Crystal structure of the sodium–potassium pump , 2007, Nature.

[28]  C. Oxvig,et al.  The structural basis of calcium transport by the calcium pump , 2007, Nature.

[29]  K. Altendorf,et al.  The K+-translocating KdpFABC complex from Escherichia coli: A P-type ATPase with unique features , 2007, Journal of bioenergetics and biomembranes.

[30]  D. Marsh,et al.  Lipid-protein interactions with the Na,K-ATPase. , 2006, Chemistry and physics of lipids.

[31]  Y. Sugita,et al.  Structural role of countertransport revealed in Ca(2+) pump crystal structure in the absence of Ca(2+). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Ebel,et al.  Purification of Na+,K+-ATPase Expressed in Pichia pastoris Reveals an Essential Role of Phospholipid-Protein Interactions* , 2005, Journal of Biological Chemistry.

[33]  Hiromi Nomura,et al.  Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues , 2004, Nature.

[34]  J. Freed,et al.  Enrichment of Endoplasmic Reticulum with Cholesterol Inhibits Sarcoplasmic-Endoplasmic Reticulum Calcium ATPase-2b Activity in Parallel with Increased Order of Membrane Lipids , 2004, Journal of Biological Chemistry.

[35]  F. Cornelius,et al.  Modulation of Na,K-ATPase by phospholipids and cholesterol. II. Steady-state and presteady-state kinetics. , 2003, Biochemistry.

[36]  H. Apell,et al.  Kinetic Investigations of the Mechanism of the Rate‐Determining Step of the Na+,K+‐ATPase Pump Cycle , 2003, Annals of the New York Academy of Sciences.

[37]  H. Takenaka,et al.  ATPase activity and oligomerization of solubilized Na+/K+-ATPase maintained by synthetic phosphatidylserine. , 2003, Annals of the New York Academy of Sciences.

[38]  V. Pintschovius,et al.  Rate limitation of the Na(+),K(+)-ATPase pump cycle. , 2001, Biophysical journal.

[39]  F. Cornelius Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. , 2001, Biochemistry.

[40]  R. Cantor,et al.  The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. , 1999, Chemistry and physics of lipids.

[41]  D. C. Mitchell,et al.  Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. , 1998, Biophysical journal.

[42]  J. Møller,et al.  Structural organization, ion transport, and energy transduction of P-type ATPases. , 1996, Biochimica et biophysica acta.

[43]  A. Lee,et al.  Effects of phospholipid fatty acyl chain length on phosphorylation and dephosphorylation of the Ca(2+)-ATPase. , 1995, The Biochemical journal.

[44]  F. Cornelius Cholesterol modulation of molecular activity of reconstituted shark Na+,K(+)-ATPase. , 1995, Biochimica et biophysica acta.

[45]  A. Lee,et al.  Effects of phosphatidylcholine fatty acyl chain length on calcium binding and other functions of the (Ca(2+)-Mg2+)-ATPase. , 1993, Biochemistry.

[46]  H. Matsui,et al.  Change in oligomeric structure of solubilized Na+/K(+)-ATPase induced by octaethylene glycol dodecyl ether, phosphatidylserine and ATP. , 1993, Biochimica et biophysica acta.

[47]  P. L. Jørgensen,et al.  Structural basis for E1–E2 conformational transitions in Na, K-pump and Ca-pump proteins , 1988, The Journal of Membrane Biology.

[48]  A. Yoda,et al.  Phosphorylated intermediates of Na,K-ATPase proteoliposomes controlled by bilayer cholesterol. Interaction with cardiac steroid. , 1987, The Journal of biological chemistry.

[49]  G. C. Levy,et al.  NMR studies of pig gastric microsomal H+,K+-ATPase and phospholipid dynamics. Effects of ethanol perturbation. , 1986, The Journal of biological chemistry.

[50]  J. Andersen,et al.  Thermoinactivation and aggregation of .alpha..beta.-units in soluble and membrane-bound sodium-potassium-ATPase , 1986 .

[51]  S. Hui,et al.  The role of cholesterol in the activity of reconstituted Ca-ATPase vesicles containing unsaturated phosphatidylethanolamine. , 1986, The Journal of biological chemistry.

[52]  G. Fink,et al.  Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases , 1986, Nature.

[53]  G. Arvidson,et al.  Phospholipid organization in H,K-ATPase-containing membranes from pig gastric mucosa. , 1985, The Journal of biological chemistry.

[54]  J. Nandi,et al.  Effects of phospholipase A2 on gastric microsomal H+, K+-ATPase system: role of "boundary lipids" and the endogenous activator protein. , 1983, Biochemistry.

[55]  D. Borchman,et al.  Variation in the lipid composition of rabbit muscle sarcoplasmic reticulum membrane with muscle type. , 1982, The Journal of biological chemistry.

[56]  J. De Pont,et al.  Studies on (Na+ + K+)-activated ATPase. XLIX. Content and role of cholesterol and other neutral lipids in highly purified rabbit kidney enzyme preparation. , 1981, Biochimica et biophysica acta.

[57]  P. Sen,et al.  Control of the potassium ion-stimulated adenosine triphosphatase of pig gastric microsomes: effects of lipid environment and the endogenous activator. , 1980, Archives of biochemistry and biophysics.

[58]  P. Sen,et al.  Characterization of gastric mucosal membranes: lipid composition of purified gastric microsomes from pig, rabbit, and frog. , 1979, Archives of biochemistry and biophysics.

[59]  P. Sen,et al.  Lipid environment of gastric potassium ion-stimulated adenosine triphosphatase. , 1979, The Biochemical journal.

[60]  J. De Pont,et al.  Studies on (Na+ + K+)-activated ATPase. XXXVIII. A 100 000 molecular weight protein as the low-energy phosphorylated intermediate of the enzyme. , 1976, Biochimica et biophysica acta.

[61]  M. Houslay,et al.  Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein , 1975, Nature.

[62]  S. Kume,et al.  Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase. , 1973, The Journal of biological chemistry.

[63]  S. Kume,et al.  Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. , 1972, The Journal of biological chemistry.

[64]  P. Seeman,et al.  Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum. , 1971, The Journal of biological chemistry.

[65]  K. Wheeler,et al.  The involvement of phosphatidylserine in adenosine triphosphatase activity of the sodium pump , 1970, The Journal of physiology.

[66]  Poul Nissen,et al.  A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps , 2010, Nature Reviews Molecular Cell Biology.

[67]  P. K. Das,et al.  Current outlooks on the lipids of gastric membranes and beyond , 2008 .

[68]  Lei Shi,et al.  Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)-ATPase. , 2008, Biochemistry.

[69]  Lei Shi,et al.  Structural and Dynamic Basis of Phospholamban and Sarcolipin Inhibition of , 2008 .

[70]  J. Kaplan,et al.  Biochemistry of Na,K-ATPase. , 2002, Annual review of biochemistry.

[71]  H. Matsui,et al.  High-performance gel chromatography of active solubilized Na+,K+-ATPase maintained by exogenous phosphatidylserine. , 1988, Progress in clinical and biological research.

[72]  G. Gordon,et al.  Role of cholesterol in the structure and function of gastric microsomal vesicles , 1983, Journal of cellular biochemistry.

[73]  R. Albers Biochemical aspects of active transport. , 1967, Annual review of biochemistry.

[74]  J C SKOU,et al.  The influence of some cations on an adenosine triphosphatase from peripheral nerves. , 1957, Biochimica et biophysica acta.