A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model

The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of the standard model as a Hamiltonian quantum mechanical theory. Here we propose a way to give a modified standard model (with 48 two-component Weyl fermions) a non-perturbative definition by embedding the modified standard model into an SO (10) chiral gauge theory. We show that the SO (10) chiral gauge theory can be put on a lattice (a 3D spatial lattice with a continuous time) if we allow fermions to interact. Such a non-perturbatively defined standard model is a Hamiltonian quantum theory with a finite-dimensional Hilbert space for a finite space volume. More generally, using the defining connection between gauge anomalies and the symmetry-protected topological orders, one can show that any truly anomaly-free chiral gauge theory can be non-perturbatively defined by putting it on a lattice in the same dimension.

[1]  X. Wen Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders , 2013, 1303.1803.

[2]  Xiao-Gang Wen,et al.  Symmetry-Protected Topological Orders in Interacting Bosonic Systems , 2012, Science.

[3]  X. Wen,et al.  Chiral symmetry on the edge of two-dimensional symmetry protected topological phases , 2012, 1206.3117.

[4]  Michael Levin,et al.  Integer quantum Hall effect for bosons. , 2012, Physical review letters.

[5]  X. Wen,et al.  Symmetry-protected quantum spin Hall phases in two dimensions. , 2012, Physical review letters.

[6]  A. Vishwanath,et al.  Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach , 2012, 1205.3156.

[7]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[8]  Xiao-Gang Wen,et al.  Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations , 2011, 1106.4752.

[9]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[10]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[11]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[12]  J. Giedt,et al.  Chiral lattice gauge theories and the strong coupling dynamics of a Yukawa-Higgs model with Ginsparg-Wilson fermions , 2007, hep-lat/0701004.

[13]  Tanmoy Bhattacharya,et al.  Chiral Lattice Gauge Theories from Warped Domain Walls and Ginsparg-Wilson Fermions , 2006, hep-lat/0605003.

[14]  H. Neuberger Noncompact chiral U(1) gauge theories on the lattice , 2000, hep-lat/0002032.

[15]  M. Lüscher Chiral gauge theories on the lattice with exact gauge invariance , 1999 .

[16]  Hiroshi Suzuki Gauge Invariant Effective Action in Abelian Chiral Gauge Theory on the Lattice , 1999, hep-lat/9901012.

[17]  Lee Lin Nondecoupling of heavy mirror-fermion , 1994 .

[18]  Creutz,et al.  Surface states and chiral symmetry on the lattice. , 1994, Physical review. D, Particles and fields.

[19]  R. Narayanan,et al.  Chiral determinant as an overlap of two vacua , 1993, hep-lat/9307006.

[20]  Yigal Shamir,et al.  Chiral fermions from lattice boundaries , 1993, hep-lat/9303005.

[21]  R. Narayanan,et al.  Infinitely many regulator fields for chiral fermions , 1992, hep-lat/9212019.

[22]  D. Kaplan A Method for simulating chiral fermions on the lattice , 1992, hep-lat/9206013.

[23]  M. Golterman,et al.  Absence of Chiral Fermions in the Eichten--Preskill Model , 1992, hep-lat/9206010.

[24]  I. Montvay Mirror fermions in chiral gauge theories , 1992, hep-lat/9205023.

[25]  Banks,et al.  Decoupling a fermion whose mass comes from a Yukawa coupling: Nonperturbative considerations. , 1992, Physical review. D, Particles and fields.

[26]  J. Preskill,et al.  Chiral gauge theories on the lattice , 1986 .

[27]  P.V.D. Swift The electroweak theory on the lattice , 1984 .

[28]  E. Witten Global Aspects of Current Algebra , 1983 .

[29]  E. Witten An SU(2) anomaly , 1982 .

[30]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[31]  H. Fritzsch,et al.  Unified Interactions of Leptons and Hadrons , 1975 .

[32]  H. Georgi,et al.  Unity of All Elementary Particle Forces , 1974 .

[33]  B. Zumino,et al.  Consequences of anomalous ward identities , 1971 .

[34]  S. Adler Axial vector vertex in spinor electrodynamics , 1969 .

[35]  Steven Weinberg,et al.  A Model of Leptons , 1967 .

[36]  J. C. Ward,et al.  Electromagnetic and weak interactions , 1964 .

[37]  M. Gell-Mann Symmetries of baryons and mesons , 1962 .

[38]  S. Glashow Partial Symmetries of Weak Interactions , 1961 .

[39]  P. Dall'Aglio The Journal of High Energy Physics , 2012 .

[40]  NUCLEAR PHYSICS B , 1994 .

[41]  J. D. Jackson,et al.  Proceedings of the XVI international conference on high energy physics, Chicago--Batavia, Illinois, September 6--13, 1972. Volume 2. Parallel sessions: mostly currents and weak interactions , 1972 .

[42]  P. Morse Annals of Physics , 1957, Nature.