Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties

A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.

[1]  L. E. Scriven,et al.  Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder , 1984 .

[2]  K. T. Ramesh,et al.  Effects of material properties on the fragmentation of brittle materials , 2006 .

[3]  H. C. Heard,et al.  Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure , 1980 .

[4]  O. Bruhns,et al.  Relationship between fracture and friction for brittle rocks , 2007 .

[5]  Adnan Ibrahimbegovic,et al.  Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material , 2003 .

[6]  William A. Curtin,et al.  Time-dependent damage evolution and failure in materials. II. Simulations , 1997 .

[7]  C. Renshaw,et al.  Universal behaviour in compressive failure of brittle materials , 2001, Nature.

[8]  Michael F. Ashby,et al.  The damage mechanics of brittle solids in compression , 1990 .

[9]  G. Quinn,et al.  Effect of Precrack “Halos” on Fracture Toughness Determined by the Surface Crack in Flexure Method , 2005 .

[10]  Michael Ortiz,et al.  Microcrack coalescence and macroscopic crack growth initiation in brittle solids , 1988 .

[11]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[12]  Sia Nemat-Nasser,et al.  Dynamic damage evolution in brittle solids , 1992 .

[13]  J. Rice,et al.  The growth of slip surfaces in the progressive failure of over-consolidated clay , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  K. Trustrum,et al.  Statistical approach to brittle fracture , 1977 .

[15]  John R. Rice,et al.  A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture , 2001 .

[16]  Horacio Dante Espinosa,et al.  A finite deformation continuum\discrete model for the description of fragmentation and damage in brittle materials , 1998 .

[17]  P. Geubelle,et al.  Grain-level analysis of dynamic fragmentation of ceramics under multi-axial compression , 2008 .

[18]  N. Bourne,et al.  Dynamic plasticity and failure of high-purity alumina under shock loading , 2006, Nature materials.

[19]  Horacio Dante Espinosa,et al.  A computational model of ceramic microstructures subjected to multi-axial dynamic loading , 2001 .

[20]  F. Guess,et al.  Crack-cluster distributions in the random fuse model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  S. Nemat-Nasser,et al.  Brittle failure in compression: splitting faulting and brittle-ductile transition , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[23]  George A. Gazonas,et al.  The cohesive element approach to dynamic fragmentation: the question of energy convergence , 2007 .

[24]  Sarah C. Baxter,et al.  Simulation of local material properties based on moving-window GMC , 2001 .

[25]  Muhammad Sahimi,et al.  Brittle fracture in disordered media: from reservoir rocks to composite solids , 1992 .

[26]  J. Clayton Continuum multiscale modeling of finite deformation plasticity and anisotropic damage in polycrystals , 2006 .

[27]  D. Marquis,et al.  A statistical approach to the rupture of brittle materials , 1992 .

[28]  S. D. Hallam,et al.  The failure of brittle solids containing small cracks under compressive stress states , 1986 .

[29]  J. Molinari,et al.  Micromechanical finite element modeling of compressive fracture in confined alumina ceramic , 2006 .

[30]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[31]  K. T. Ramesh,et al.  Direct Observation of the Dynamic Compressive Failure of a Transparent Polycrystalline Ceramic (AlON) , 2006 .

[32]  P. Geubelle,et al.  Mesoscale analysis of dynamic fragmentation of ceramics under tension , 2005 .

[33]  Guruswami Ravichandran,et al.  A micromechanical model for high strain rate behavior of ceramics , 1995 .

[34]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[35]  B. J. Pletka,et al.  The role of plasticity as a limiting factor in the compressive failure of high strength ceramics , 1998 .

[36]  C. Anderson,et al.  The ballistic performance of confined Al2O3 ceramic tiles , 1992 .

[37]  L. B. Freund,et al.  Modeling and Simulation of Dynamic Fragmentation in Brittle Materials , 1999 .

[38]  K. T. Ramesh,et al.  High Rate Response and Dynamic Failure of Structural Ceramics , 2005 .

[39]  C. Thelander,et al.  Spin relaxation in InAs nanowires studied by tunable weak antilocalization , 2005 .

[40]  A. Gloskovskii,et al.  Time-of-flight photoelectron spectromicroscopy of single MoS2 nanotubes , 2006 .

[41]  Dennis E. Grady,et al.  Local inertial effects in dynamic fragmentation , 1982 .

[42]  Horacio Dante Espinosa,et al.  Grain level analysis of crack initiation and propagation in brittle materials , 2001 .

[43]  J. C. Jaeger,et al.  FUNDAMENTALS OF ROCK MECHANICS, SECOND EDITION , 1976 .

[44]  K. T. Ramesh,et al.  Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression , 2004 .

[45]  K. T. Ramesh,et al.  A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution , 2005 .

[46]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[47]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[48]  M. Sahini,et al.  Applications of Percolation Theory , 2023, Applied Mathematical Sciences.

[49]  K. T. Ramesh,et al.  An interacting micro-crack damage model for failure of brittle materials under compression , 2008 .

[50]  Sia Nemat-Nasser,et al.  Strain-rate effect on brittle failure in compression , 1994 .

[51]  D. Jeulin Fracture Statistics Models and Crack Propagation in Random Media , 1994 .

[52]  John E. Bolander,et al.  Irregular lattice model for quasistatic crack propagation , 2005 .

[53]  R. Rice Possible effects of elastic anisotropy on mechanical properties of ceramics , 1994 .

[54]  H. Herrmann,et al.  Statistical models for the fracture of disordered media. North‐Holland, 1990, 353 p., ISBN 0444 88551x (hardbound) US $ 92.25, 0444 885501 (paperback) US $ 41.00 , 1990 .

[55]  Sia Nemat-Nasser,et al.  Compression‐induced microcrack growth in brittle solids: Axial splitting and shear failure , 1985 .

[56]  Jean-François Molinari,et al.  A statistical investigation of the effects of grain boundary properties on transgranular fracture , 2008 .

[57]  E. J. Öpik,et al.  Physics of the Earth's Interior , 1959 .

[58]  James D. Byerlee,et al.  Frictional characteristics of granite under high confining pressure , 1967 .

[59]  D. Krajcinovic Selection of damage parameter – Art or science? , 1998 .

[60]  Beale,et al.  Elastic fracture in random materials. , 1988, Physical review. B, Condensed matter.

[61]  Jean-François Molinari,et al.  Stochastic fracture of ceramics under dynamic tensile loading , 2004 .

[62]  G. Ravichandran,et al.  Energy-based model of compressive splitting in heterogeneous brittle solids , 1998 .

[63]  M. E. Kipp,et al.  Continuum modelling of explosive fracture in oil shale , 1980 .

[64]  Gilles Pijaudier-Cabot,et al.  Progressive damage in discrete models and consequences on continuum modelling , 1996 .

[65]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[66]  Reuben H. Kraft,et al.  Effects of Machining on the Uniaxial and Equibiaxial Flexure Strength of CAP3 AD-995 Al2O3 , 2005 .

[67]  Ghatu Subhash,et al.  Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids , 2003 .

[68]  Guruswami Ravichandran,et al.  Failure mode transition in ceramics under dynamic multiaxial compression , 2000 .

[69]  C. Blanchard,et al.  Fragmentation of brittle materials at high rates of loading , 1991 .

[70]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[71]  J. Asay,et al.  Two-dimensional mesoscale simulations of quasielastic reloading and unloading in shock compressed aluminum , 2006 .