The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance

[1]  Mietek Jaroniec,et al.  AlSb thin films as negative electrodes for Li-ion and Na-ion batteries , 2013 .

[2]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[3]  Raymond R. Unocic,et al.  Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries , 2013 .

[4]  Raymond R. Unocic,et al.  Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory , 2013 .

[5]  L. Stievano,et al.  Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries , 2013 .

[6]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[7]  G. Veith,et al.  Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using η-Cu6Sn5 thin films as a model system. , 2013, Physical chemistry chemical physics : PCCP.

[8]  Gabriel M. Veith,et al.  Cu2Sb thin films as anode for Na-ion batteries , 2013 .

[9]  S. Manzhos,et al.  A Comparative Computational Study of Structures, Diffusion, and Dopant Interactions between Li and Na Insertion into Si , 2013 .

[10]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[11]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[12]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[13]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[14]  Z. Fu,et al.  InP as new anode material for lithium ion batteries , 2009 .

[15]  Phl Peter Notten,et al.  Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study , 2009 .

[16]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[17]  W. Ho,et al.  Electrochemical performance of In2O3 thin film electrode in lithium cell , 2008 .

[18]  J. Dahn,et al.  Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries , 2003 .

[19]  J. Dahn,et al.  Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects , 2001 .

[20]  Christopher S. Johnson,et al.  An in situ X-ray absorption spectroscopy study of InSb electrodes in lithium batteries , 2001 .

[21]  Christopher S. Johnson,et al.  Electrochemistry and in-situ x-ray diffraction of InSb in lithium batteries. , 2000 .

[22]  Christopher S. Johnson,et al.  Structural and mechanistic features of intermetallic materials for lithium batteries , 2000 .

[23]  J. Corbett,et al.  Synthesis, Characterization, and Bonding of Indium Cluster Phases: Na15In27.4, a Network of In16 and In11 Clusters; Na2In with Isolated Indium Tetrahedra , 1993 .

[24]  A. Pelton,et al.  The In-Li (Indium-Lithium) System , 1991 .

[25]  C. Goradia,et al.  XPS investigation of anodic oxides grown on p-type InP , 1990 .

[26]  R. Huggins,et al.  Thermodynamic and mass transport properties of “LiIn” , 1980 .

[27]  Thomas A. Carlson,et al.  Core electron binding energies in some Group IIIA, VB, and VIB compounds , 1973 .