Hypocoercivity and controllability in linear semi-dissipative ODEs and DAEs

A detailed analysis of the stability of dynamical systems of evolution equations (finite or infinite-dimensional) is still very problem dependent and computationally challenging, see [6, 18, 19, 27]. In view of these challenges it is important to use structural information of the dynamical system to characterize stability, asymptotic stability and the transient behavior. In this paper we consider these questions for two classes of finite-dimensional linear systems, although we have in mind to extend these results to the infinite-dimensional case and will do so for some examples. The first class are ordinary differential equations (ODEs) of the form

[1]  C. Schmeiser,et al.  Propagator norm and sharp decay estimates for Fokker–Planck equations with linear drift , 2020, Communications in Mathematical Sciences.

[2]  B. Sapiro Scalar , 2020, Definitions.

[3]  Volker Mehrmann,et al.  Distance problems for dissipative Hamiltonian systems and related matrix polynomials , 2020, Linear Algebra and its Applications.

[4]  Hans Zwart,et al.  Linear port-Hamiltonian descriptor systems , 2018, Math. Control. Signals Syst..

[5]  Paul Van Dooren,et al.  Robust port-Hamiltonian representations of passive systems , 2018, Autom..

[6]  Volker Mehrmann,et al.  Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems , 2018, SIAM J. Matrix Anal. Appl..

[7]  E. Carlen,et al.  On multi-dimensional hypocoercive BGK models , 2017, 1711.07360.

[8]  A. Arnold,et al.  On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition , 2017, Stochastic Dynamics Out of Equilibrium.

[9]  Nicole Marheineke,et al.  On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks , 2017, SIAM J. Sci. Comput..

[10]  Punit Sharma,et al.  Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations , 2016, SIAM J. Matrix Anal. Appl..

[11]  Herbert Egger,et al.  Damped wave systems on networks: exponential stability and uniform approximations , 2016, Numerische Mathematik.

[12]  Matthias Voigt,et al.  The Kalman–Yakubovich–Popov inequality for differential-algebraic systems , 2015 .

[13]  Anton Arnold,et al.  On linear hypocoercive BGK models , 2015, 1510.02290.

[14]  A. Arnold,et al.  Large-time behavior in non-symmetric Fokker-Planck equations , 2015, 1506.02470.

[15]  G. Ottaviani,et al.  A geometric perspective on the Singular Value Decomposition , 2015, 1503.07054.

[16]  Anton Arnold,et al.  Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift , 2014, 1409.5425.

[17]  Michael Herty,et al.  Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks , 2011, Multiscale Model. Simul..

[18]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[19]  C. Mouhot,et al.  Hypocoercivity for kinetic equations with linear relaxation terms , 2008, 0810.3493.

[20]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[21]  Hyeong‐Ohk Bae,et al.  Estimates of the wake for the 3D Oseen equations , 2008 .

[22]  C. Villani,et al.  Hypocoercivity , 2006, math/0609050.

[23]  Tatjana Stykel,et al.  Stability and inertia theorems for generalized Lyapunov equations , 2002 .

[24]  Roswitha März,et al.  Criteria for the Trivial Solution of Differential Algebraic Equations with Small Nonlinearities to be Asymptotically Stable , 1998 .

[25]  R. Byers,et al.  Descriptor Systems Without Controllability at Infinity , 1997 .

[26]  F. Lewis A survey of linear singular systems , 1986 .

[27]  Charles R. Johnson,et al.  Matrix analysis , 1985 .

[28]  P. Dooren The generalized eigenstructure problem in linear system theory , 1981 .

[29]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[30]  T. Ström On Logarithmic Norms , 1975 .

[31]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[32]  P. S. Bauer Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Anton Arnold,et al.  THE HYPOCOERCIVITY INDEX FOR THE SHORT AND LARGE TIME BEHAVIOR OF ODES , 2021 .

[34]  H. Freud Mathematical Control Theory , 2016 .

[35]  Vu Hoang Linh,et al.  Robust Stability of Differential-Algebraic Equations , 2013 .

[36]  Carl Christian Kjelgaard Mikkelsen,et al.  Numerical methods for large Lyapunov equations , 2009 .

[37]  Luca Dieci,et al.  Lyapunov and other spectra : a survey ∗ , 2007 .

[38]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[39]  Volker Mehrmann,et al.  A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC / SYMMETRIC , 2005 .

[40]  Brian Roffel,et al.  Linear Multivariable Control , 2004 .

[41]  T. Stykel Analysis and Numerical Solution of Generalized Lyapunov Equations , 2002 .

[42]  Li︠u︡dmila I︠A︡kovlevna Adrianova Introduction to linear systems of differential equations , 1995 .

[43]  Daniel Boley,et al.  Numerical Methods for Linear Control Systems , 1994 .

[44]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[45]  Peter Lancaster,et al.  The theory of matrices , 1969 .