Block Krylov Subspace Methods for Solving Large Sylvester Equations
暂无分享,去创建一个
[1] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[2] F. Chatelin. Valeurs propres de matrices , 1988 .
[3] H. Sadok,et al. Global FOM and GMRES algorithms for matrix equations , 1999 .
[4] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[5] V. Simoncini,et al. On the numerical solution ofAX −XB =C , 1996 .
[6] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[7] M. Sadkane. Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .
[8] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[9] D. Bernstein,et al. The optimal projection equations for fixed-order dynamic compensation , 1984 .
[10] I. Jaimoukha,et al. Krylov subspace methods for solving large Lyapunov equations , 1994 .
[11] L. Reichel,et al. Krylov-subspace methods for the Sylvester equation , 1992 .
[12] F. R. Gantmakher. The Theory of Matrices , 1984 .
[13] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[14] A. Laub,et al. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .
[15] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[16] Y. Saad,et al. Numerical solution of large Lyapunov equations , 1989 .
[17] J. Hearon,et al. Nonsingular solutions of TA−BT=C , 1977 .
[18] Shankar P. Bhattacharyya,et al. Controllability, observability and the solution of AX - XB = C , 1981 .
[19] Daniel Boley. Krylov space methods on state-space control models , 1994 .
[20] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[21] G. Golub,et al. A Hessenberg-Schur method for the problem AX + XB= C , 1979 .
[22] D. Hu,et al. Krylov-Subspace Methods for the Sylvester Equation , 2001 .
[23] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[24] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .