Low-loss YIG-based magnonic crystals with large tunable bandgaps

Control of spin waves in magnonic crystals is essential for magnon-based computing. Crystals made of ferromagnetic metals offer versatility in band structure design, but strong magnetic damping restricts their transmission efficiency. Yttrium iron garnet (YIG) with ultralow damping is the palpable alternative, yet its small saturation magnetization limits dipolar coupling between discrete units. Here, we experimentally demonstrate low-loss spin-wave manipulation in magnonic crystals of physically separated nanometer-thick YIG stripes. We enhance the transmission of spin waves in allowed minibands by filling the gaps between YIG stripes with CoFeB. Thus-formed magnonic crystals exhibit tunable bandgaps of 50–200 MHz with nearly complete suppression of the spin-wave signal. We also show that Bragg scattering on only two units produces clear frequency gaps in spin-wave transmission spectra. The integration of strong ferromagnets in nanometer-thick YIG-based magnonic crystals provides effective spin-wave manipulation and low-loss propagation, a vital parameter combination for magnonic technologies.Control of spin wave transport in magnonic crystals is vital for magnonic devices. Here the authors show low-loss spin-wave manipulation in nanometer thick magnonic crystals of discrete YIG stripes separated by air or CoFeB filled grooves exhibiting tunable bandgaps of 50–200 MHz.

[1]  M. Kostylev,et al.  Scattering of backward spin waves in a one-dimensional magnonic crystal , 2008, 0805.4142.

[2]  M. Kostylev,et al.  Collective spin modes in monodimensional magnonic crystals consisting of dipolarly coupled nanowires , 2007 .

[3]  G. Monsivais,et al.  Mapping of spin wave propagation in a one-dimensional magnonic crystal , 2016 .

[4]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[5]  M. Krawczyk,et al.  Review and prospects of magnonic crystals and devices with reprogrammable band structure , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  A. Hoffmann,et al.  Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films , 2012 .

[7]  Germany,et al.  A spin-wave logic gate based on a width-modulated dynamic magnonic crystal , 2015, 1501.03486.

[8]  P. Bortolotti,et al.  Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics , 2014, Scientific Reports.

[9]  Daichi Chiba,et al.  Nonreciprocal emission of spin-wave packet in FeNi film , 2010 .

[10]  Erik H. Waller,et al.  Optically reconfigurable magnetic materials , 2015, Nature Physics.

[11]  M. Kostylev,et al.  Realization of a mesoscopic reprogrammable magnetic logic based on a nanoscale reconfigurable magnonic crystal , 2012 .

[12]  P. Bortolotti,et al.  Inverse Spin Hall Effect in nanometer-thick YIG/Pt system , 2013 .

[13]  A. Chumak Magnon Spintronics , 2019, Spintronics Handbook: Spin Transport and Magnetism, Second Edition.

[14]  J. Gregg,et al.  Oscillatory energy exchange between waves coupled by a dynamic artificial crystal. , 2011, Physical review letters.

[15]  Andrii V. Chumak,et al.  All-linear time reversal by a dynamic artificial crystal , 2010, Nature communications.

[16]  H. Ulrichs,et al.  The building blocks of magnonics , 2011, 1101.0479.

[17]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .

[18]  A. Adeyeye,et al.  Nanostructured magnonic crystals with size-tunable bandgaps. , 2010, ACS nano.

[19]  Rupert Huber,et al.  Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry , 2013 .

[20]  G. Schmidt,et al.  Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material , 2016, Scientific Reports.

[21]  T. Schneider,et al.  Phase reciprocity of spin-wave excitation by a microstrip antenna , 2008 .

[22]  A. Serga,et al.  Magnonic crystals for data processing , 2017, 1702.06701.

[23]  Hiroyuki Takagi,et al.  Investigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperature , 2011 .

[24]  M. Bailleul,et al.  Spin-wave transduction at the submicrometer scale: Experiment and modeling , 2010 .

[25]  M. Kostylev,et al.  Brillouin light scattering studies of planar metallic magnonic crystals , 2010, 1004.1881.

[26]  Gerhard Jakob,et al.  Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization , 2014 .

[27]  Mikhail Kostylev,et al.  Excitation of microwaveguide modes by a stripe antenna , 2009 .

[28]  A. Serga,et al.  Magnonic band gaps in waveguides with a periodic variation of the saturation magnetization , 2013, 1305.6619.

[29]  D. Grundler,et al.  Magnonics , 2010 .

[30]  D. Grundler,et al.  Omnidirectional spin-wave nanograting coupler , 2013, Nature Communications.

[31]  A. Adeyeye,et al.  Observation of frequency band gaps in a one-dimensional nanostructured magnonic crystal , 2009 .

[32]  S. Nikitov,et al.  Standing spin waves in magnonic crystals , 2013 .

[33]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[34]  John G. Jones,et al.  Pseudomorphic Yttrium Iron Garnet Thin Films With Low Damping and Inhomogeneous Linewidth Broadening , 2015, IEEE Magnetics Letters.

[35]  C. S. Tsai,et al.  Spin waves in periodic magnetic structures-magnonic crystals , 2001 .

[36]  A. Slavin,et al.  Magnonics: a new research area in spintronics and spin wave electronics , 2015 .

[37]  S. Dijken,et al.  Propagating spin waves in nanometer-thick yttrium iron garnet films: Dependence on wave vector, magnetic field strength, and angle , 2018, Physical Review B.

[38]  M. Kostylev,et al.  Scattering of surface and volume spin waves in a magnonic crystal , 2009, 0903.3686.

[39]  T. Devolder,et al.  Spin wave contributions to the high-frequency magnetic response of thin films obtained with inductive methods , 2004 .

[40]  M. Madami,et al.  Magnonic band structures in two-dimensional bi-component magnonic crystals with in-plane magnetization , 2013 .

[41]  S. Nikitov,et al.  Bragg resonances of magnetostatic surface spin waves in a layered structure: Magnonic crystal-dielectric-metal , 2012 .

[42]  M. Kostylev,et al.  Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. , 2010, Physical review letters.