Effect of Chemical Modifications on the Electronic Transport Properties of the Optical Molecular Switch

Using first-principles density functional theory and nonequilibrium Green's function formalism, we investigate the effect of chemical modifications on the electronic transport properties of the dihydroazulene optical molecular switch. The molecule that comprises the switch can convert between the closed and the open forms upon photoexcitation. Theoretical results show that the chemical modifications play an important role in determining the switching behavior of such molecular device. This result reflects that the current ratio can be manipulated with the careful selection of the substituents and can provide fundamental guidelines for the design of functional molecular devices.

[1]  J. Krause,et al.  Manipulating I-V Characteristics of a Molecular Switch with Chemical Modifications , 2010 .

[2]  K. Yoshizawa,et al.  Theoretical study of a neutral, doubly protonated, and doubly deprotonated porphyrin dithiolate used as a molecular switch , 2006 .

[3]  Nathalie Katsonis,et al.  Reversible Conductance Switching of Single Diarylethenes on a Gold Surface , 2006 .

[4]  Bidisa Das,et al.  Molecular switch on a metal surface. , 2006, The journal of physical chemistry. B.

[5]  D. Ralph,et al.  The Kondo Effect in the Presence of Ferromagnetism , 2004, Science.

[6]  Yukio Imanishi,et al.  A Molecular Photodiode System That Can Switch Photocurrent Direction , 2004, Science.

[7]  S. Speller,et al.  Conductance of Pd-H nanojunctions , 2004, cond-mat/0404538.

[8]  Yuyuan Tian,et al.  Measurement of Single Molecule Conductance: Benzenedithiol and Benzenedimethanethiol , 2004 .

[9]  He Tian,et al.  A Single Photochromic Molecular Switch with Four Optical Outputs Probing Four Inputs , 2003 .

[10]  Yuyuan Tian,et al.  Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions , 2003, Science.

[11]  Ian A. Walmsley,et al.  Quantum Physics Under Control , 2003 .

[12]  S. Speller,et al.  Transition from tunneling to direct contact in tungsten nanojunctions , 2003, cond-mat/0304389.

[13]  Kurt Stokbro,et al.  Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds , 2003 .

[14]  N. D. Lang,et al.  Measurement of the conductance of a hydrogen molecule , 2002, Nature.

[15]  R. Williams,et al.  Bistable molecular conductors with a field-switchable dipole group , 2002, cond-mat/0206495.

[16]  E. Riedle,et al.  Ultrafast bidirectional dihydroazulene/vinylheptafulvene (DHA/VHF) molecular switches: photochemical ring closure of vinylheptafulvene proven by a two-pulse experiment. , 2002, Journal of the American Chemical Society.

[17]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[18]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[19]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[20]  F. Diederich,et al.  Photoswitchable Tetraethynylethene‐Dihydroazulene Chromophores , 2001 .

[21]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[22]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[23]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[24]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[25]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .