A multi-resolution data structure for two-dimensional Morse-Smale functions
暂无分享,去创建一个
B. Hamann | P.-T. Bremer | H. Edelsbrunner | V. Pascucci | H. Edelsbrunner | Valerio Pascucci | B. Hamann | P. Bremer
[1] R. E. Carlson,et al. An algorithm for monotone piecewise bicubic interpolation , 1989 .
[2] Jihad El-Sana,et al. Topology Simplification for Polygonal Virtual Environments , 1998, IEEE Trans. Vis. Comput. Graph..
[3] Jesse Freeman,et al. in Morse theory, , 1999 .
[4] A W Tucker,et al. On Combinatorial Topology. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[5] Zoë J. Wood,et al. Topological Noise Removal , 2001, Graphics Interface.
[6] Jovan Popovic,et al. Progressive simplicial complexes , 1997, SIGGRAPH.
[7] Hugues Hoppe,et al. Progressive meshes , 1996, SIGGRAPH.
[8] A. C. Esq.. XL. On contour and slope lines , 1859 .
[9] Renato Pajarola,et al. Topology preserving and controlled topology simplifying multiresolution isosurface extraction , 2000 .
[10] Valerio Pascucci,et al. Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization , 2002, IEEE Trans. Vis. Comput. Graph..
[11] Gabriel Taubin,et al. A signal processing approach to fair surface design , 1995, SIGGRAPH.
[12] 松本 幸夫. An introduction to Morse theory , 2002 .
[13] Greg Turk,et al. Fast and memory efficient polygonal simplification , 1998 .
[14] Klaus Hörmann. Morphometrie der Erdoberfläche , 1971 .
[15] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[16] John L. Pfaltz,et al. A Graph Grammar that Describes the Set of Two-Dimensional Surface Networks , 1978, Graph-Grammars and Their Application to Computer Science and Biology.
[17] Jacqueline H. Chen,et al. Direct numerical simulation of autoignition in non- homogeneous hydrogen-air mixtures , 2003 .
[18] Tao Ju,et al. Dual contouring of hermite data , 2002, ACM Trans. Graph..
[19] Paolo Cignoni,et al. Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.
[20] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[21] Michael Garland,et al. Surface simplification using quadric error metrics , 1997, SIGGRAPH.
[22] C. Bajaj,et al. Scene Simpli ® cation TOPOLOGY PRESERVING DATA SIMPLIFICATION WITH ERROR BOUNDS , 1998 .
[23] Amitabh Varshney,et al. Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..
[24] M. Morse. Relations between the critical points of a real function of $n$ independent variables , 1925 .
[25] R. E. Carlson,et al. Monotone Piecewise Cubic Interpolation , 1980 .
[26] Herbert Edelsbrunner,et al. Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[27] Herbert Edelsbrunner,et al. Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.
[28] Masaki Hilaga,et al. Topological Modeling for Visualization , 1997 .
[29] H. Greiner,et al. A survey on univariate data interpolation and approximation by splines of given shape , 1991 .
[30] Valerio Pascucci,et al. Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.
[31] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[32] J. Maxwell. L. On hills and dales: To the editors of the Philosophical Magazine and Journal , 1870 .
[33] Herbert Edelsbrunner,et al. Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..