A multi-resolution data structure for two-dimensional Morse-Smale functions

We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex, we construct a topological hierarchy by progressively canceling critical points in pairs. Concurrently, we create a geometric hierarchy by adapting the geometry to the changes in topology. The data structure supports mesh traversal operations similarly to traditional multi-resolution representations.

[1]  R. E. Carlson,et al.  An algorithm for monotone piecewise bicubic interpolation , 1989 .

[2]  Jihad El-Sana,et al.  Topology Simplification for Polygonal Virtual Environments , 1998, IEEE Trans. Vis. Comput. Graph..

[3]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[4]  A W Tucker,et al.  On Combinatorial Topology. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[6]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[7]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[8]  A. C. Esq. XL. On contour and slope lines , 1859 .

[9]  Renato Pajarola,et al.  Topology preserving and controlled topology simplifying multiresolution isosurface extraction , 2000 .

[10]  Valerio Pascucci,et al.  Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization , 2002, IEEE Trans. Vis. Comput. Graph..

[11]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[12]  松本 幸夫 An introduction to Morse theory , 2002 .

[13]  Greg Turk,et al.  Fast and memory efficient polygonal simplification , 1998 .

[14]  Klaus Hörmann Morphometrie der Erdoberfläche , 1971 .

[15]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[16]  John L. Pfaltz,et al.  A Graph Grammar that Describes the Set of Two-Dimensional Surface Networks , 1978, Graph-Grammars and Their Application to Computer Science and Biology.

[17]  Jacqueline H. Chen,et al.  Direct numerical simulation of autoignition in non- homogeneous hydrogen-air mixtures , 2003 .

[18]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[19]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[20]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[21]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[22]  C. Bajaj,et al.  Scene Simpli ® cation TOPOLOGY PRESERVING DATA SIMPLIFICATION WITH ERROR BOUNDS , 1998 .

[23]  Amitabh Varshney,et al.  Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..

[24]  M. Morse Relations between the critical points of a real function of $n$ independent variables , 1925 .

[25]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[26]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[27]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[28]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[29]  H. Greiner,et al.  A survey on univariate data interpolation and approximation by splines of given shape , 1991 .

[30]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[31]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[32]  J. Maxwell L. On hills and dales: To the editors of the Philosophical Magazine and Journal , 1870 .

[33]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..