Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations

This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrodinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semidiscrete time schemes based on the method developed by Duran and Sanz-Serna [IMA J. Numer. Anal. 20 (2000), pp. 235-261] are derived for these unusual boundary conditions. Stability results are stated and several numerical tests are performed to analyze the capacity of the proposed approach.

[1]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[2]  Christophe Besse,et al.  Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions , 2004, Math. Comput..

[3]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[4]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .

[5]  Anton Arnold,et al.  Numerically Absorbing Boundary Conditions for Quantum Evolution Equations , 1998, VLSI Design.

[6]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[7]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation , 2001 .

[8]  Charles-Henri Bruneau,et al.  Numerical resolution of some nonlinear Schrödinger‐like equations in plasmas , 1999 .

[9]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[10]  Jérémie Szeftel,et al.  Design of Absorbing Boundary Conditions for Schrödinger Equations in Rd , 2004, SIAM J. Numer. Anal..

[11]  R. Feldman Construction , 2004, SP-110: Hyperbolic Paraboloid Shells.

[12]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[13]  Christophe Besse,et al.  Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation , 2003 .

[14]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. Geometric theory , 1998 .

[15]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[16]  Frank Schmidt,et al.  A comparison of transparent boundary conditions for the Fresnel equation , 2001 .

[17]  Xavier Antoine,et al.  Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape , 1999 .

[18]  A. Arnold MATHEMATICAL CONCEPTS OF OPEN QUANTUM BOUNDARY CONDITIONS , 2001 .

[19]  Richard Lascar,et al.  Propagation des singularités des solutions d'équations pseudo-différentielles quasi-homogènes , 1977 .

[20]  A. Zayed Handbook of Function and Generalized Function Transformations , 1996 .

[21]  Christophe Besse,et al.  CONSTRUCTION, STRUCTURE AND ASYMPTOTIC APPROXIMATIONS OF A MICRODIFFERENTIAL TRANSPARENT BOUNDARY CONDITION FOR THE LINEAR SCHRÖDINGER EQUATION , 2001 .

[22]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[23]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .