Cluster exchange groupoids and framed quadratic differentials

[1]  Y. Qiu,et al.  Finite presentations for spherical/braid twist groups from decorated marked surfaces , 2017, Journal of Topology.

[2]  M. Wemyss,et al.  Stability on contraction algebras implies $K(\pi,1)$ , 2019 .

[3]  Y. Qiu,et al.  Decorated Marked Surfaces III: The Derived Category of a Decorated Marked Surface , 2018, International Mathematics Research Notices.

[4]  Y. Qiu The braid group for a quiver with superpotential , 2017, Science China Mathematics.

[5]  Y. Qiu Decorated marked surfaces (part B): topological realizations , 2018 .

[6]  Y. Qiu,et al.  Decorated marked surfaces II: Intersection numbers and dimensions of Homs , 2014, Transactions of the American Mathematical Society.

[7]  Y. Qiu,et al.  Contractible stability spaces and faithful braid group actions , 2014, Geometry & Topology.

[8]  Y. Qiu STABILITY CONDITIONS AND QUANTUM DILOGARITHM IDENTITIES FOR DYNKIN QUIVERS , 2011, 1111.1010.

[9]  A. King,et al.  Exchange graphs and Ext quivers , 2011, 1109.2924.

[10]  M. Kontsevich,et al.  Stability in Fukaya categories of surfaces , 2014 .

[11]  Y. Qiu Decorated marked surfaces: spherical twists versus braid twists , 2014, 1407.0806.

[12]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[13]  John Guaschi,et al.  A survey of surface braid groups and the lower algebraic K-theory of their group rings , 2013, 1302.6536.

[14]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[15]  B. Keller Cluster algebras and derived categories , 2012, 1202.4161.

[16]  B. Keller On cluster theory and quantum dilogarithm identities , 2011, 1102.4148.

[17]  T. Brustle,et al.  On the cluster category of a marked surface without punctures , 2010, 1005.2422.

[18]  Pierre-Guy Plamondon Cluster algebras via cluster categories with infinite-dimensional morphism spaces , 2010, Compositio Mathematica.

[19]  B. Keller,et al.  Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.

[20]  Claire Amiot Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.

[21]  I. Reiten,et al.  Mutation of cluster-tilting objects and potentials , 2008, 0804.3813.

[22]  D. Labardini-Fragoso,et al.  Quivers with potentials associated to triangulated surfaces , 2008, 0803.1328.

[23]  Y. Yoshino,et al.  Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.

[24]  J. Weyman,et al.  Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.

[25]  D. Thurston,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.

[26]  D. Krammer A class of garside groupoid structures on the pure braid group , 2005, math/0509165.

[27]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[28]  Anton Zorich,et al.  Connected components of the moduli spaces of Abelian differentials with prescribed singularities , 2002, math/0201292.

[29]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[30]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.