An optimal control approach to a posteriori error estimation in finite element methods
暂无分享,去创建一个
[1] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[2] Guido Kanschat,et al. Parallel and adaptive Galerkin methods for radiative transfer problems , 1996 .
[3] Rolf Rannacher,et al. A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..
[4] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[5] Anthony T. Patera,et al. A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .
[6] Rolf Rannacher,et al. A posteriori error estimation in least-squares stabilized finite element schemes , 1998 .
[7] Endre Süli,et al. Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .
[8] M. Chipot. Finite Element Methods for Elliptic Problems , 2000 .
[9] R. Rannacher. Error Control in Finite Element Computations , 1999 .
[10] Mats G. Larson,et al. Adaptive multilevel finite element approximations of semilinear elliptic boundary value problems , 1999, Numerische Mathematik.
[11] Rolf Rannacher,et al. Foundations of Computational Mathematics: Adaptive finite element methods for flow problems , 2001 .
[12] Kenneth Eriksson,et al. An adaptive finite element method for linear elliptic problems , 1988 .
[13] R. Rannacher,et al. Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .
[14] Jacques Rappaz,et al. Error estimates and adaptive finite elements for nonlinear diffusion-convection problems , 1996 .
[15] Rolf Rannacher,et al. On Error Control in CFD , 1994 .
[16] Rolf Rannacher,et al. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .
[17] Claes Johnson,et al. ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .
[18] Roland Becker,et al. Multigrid techniques for finite elements on locally refined meshes , 2000, Numer. Linear Algebra Appl..
[19] D. Estep. A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .
[20] Ivo Babuška,et al. The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .
[21] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[22] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[23] . Wehrse,et al. RECENT WORK IN HEIDELBERG ON THE SOLUTIONOF THE RADIATIVE TRANSFER EQUATIONR , 1999 .
[24] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems , 1994 .
[25] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[26] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[27] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[28] Claes Johnson,et al. Adaptive finite element methods in computational mechanics , 1992 .
[29] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[30] J. Oden,et al. An a posteriori error estimate for finite element approximations of the Navier-Stokes equations , 1994 .
[31] Kenneth Eriksson,et al. Adaptive Finite Element Methods for Parabolic Problems VI: Analytic Semigroups , 1998 .
[32] Ivo Babuška,et al. The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .
[33] Claes Johnson,et al. Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .
[34] Rolf Rannacher,et al. An Adaptive Finite Element Method for Unsteady Convection-Dominated Flows with Stiff Source Terms , 1999, SIAM J. Sci. Comput..
[35] F. Suttmeier,et al. An adaptive displacement/pressure finite element scheme for treating incompressibility effects in elasto‐plastic materials , 2001 .
[36] Rolf Rannacher,et al. Detailed Numerical Simulations in Flow Reactors: A New Approach in Measuring Absolute Rate Constants , 1996 .
[37] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[38] Anthony T. Patera,et al. A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .
[39] Rolf Rannacher,et al. A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .
[40] Nils-Erik Wiberg,et al. Adaptive procedure with superconvergent patch recovery for linear parabolic problems , 1997 .
[41] S. Ohnimus,et al. Coupled model- and solution-adaptivity in the finite-element method , 1997 .
[42] Rolf Rannacher,et al. Adaptive finite element methods for low-mach-number flows with chemical reactions , 1999 .
[43] Kenneth Eriksson,et al. Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .
[44] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[45] Peter Hansbo,et al. Adaptive finite element methods for small strain elasto-plasticity , 1992 .
[46] Donald Estep,et al. The discontinuous Galerkin method for semilinear parabolic problems , 1993 .
[47] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[48] R. RannacherInstitut,et al. Weighted a Posteriori Error Control in Fe Methods , 1995 .
[49] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[50] Ivo Babuška,et al. The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .
[51] J. Rappaz,et al. Numerical analysis for nonlinear and bifurcation problems , 1997 .
[52] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[53] R. Rannacher,et al. A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .
[54] Willy Dörfler,et al. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..
[55] H. Blum,et al. An adaptive finite element discretisation¶for a simplified Signorini problem , 2000 .
[56] Rolf Rannacher,et al. Fast and reliable solution of the Navier–Stokes equations including chemistry , 1999 .
[57] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[58] Heribert Blum,et al. Weighted Error Estimates for Finite Element Solutions of Variational Inequalities , 2000, Computing.
[59] Guido Kanschat,et al. SOLUTION OF MULTI-DIMENSIONAL RADIATIVE TRANSFER PROBLEMS ON PARALLEL COMPUTERS , 2000 .
[60] F. Suttmeier. General approach for a posteriori error estimates for finite element solutions of variational inequalities , 2001 .
[61] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[62] Claes Johnson,et al. Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .
[63] Ivo Babuška,et al. A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains , 1996 .
[64] Roland Becker,et al. Mesh Adaptation for Stationary Flow Control , 2001 .
[65] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[66] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .
[67] J. Tinsley Oden,et al. A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .
[68] Rolf Rannacher,et al. Finite element approximation of the acoustic wave equation: error control and mesh adaptation , 1999 .
[69] D. Estep,et al. Global error control for the continuous Galerkin finite element method for ordinary differential equations , 1994 .
[70] Claes Johnson,et al. Adaptive finite element methods for diffusion and convection problems , 1990 .
[71] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[72] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[73] Anthony T. Patera,et al. Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .
[74] Rolf Rannacher,et al. A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity , 1999 .
[75] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[76] Robert Sandboge,et al. Adaptive Finite Element Methods for Reactive Flow Problems , 1996 .
[77] Ralf Hartmann. Adaptive Fe Methods for Conservation Equations , 2001 .
[78] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .