An optimal control approach to a posteriori error estimation in finite element methods

This article surveys a general approach to error control and adaptive mesh design in Galerkin finite element methods that is based on duality principles as used in optimal control. Most of the existing work on a posteriori error analysis deals with error estimation in global norms like the ‘energy norm’ or the L2 norm, involving usually unknown ‘stability constants’. However, in most applications, the error in a global norm does not provide useful bounds for the errors in the quantities of real physical interest. Further, their sensitivity to local error sources is not properly represented by global stability constants. These deficiencies are overcome by employing duality techniques, as is common in a priori error analysis of finite element methods, and replacing the global stability constants by computationally obtained local sensitivity factors. Combining this with Galerkin orthogonality, a posteriori estimates can be derived directly for the error in the target quantity. In these estimates local residuals of the computed solution are multiplied by weights which measure the dependence of the error on the local residuals. Those, in turn, can be controlled by locally refining or coarsening the computational mesh. The weights are obtained by approximately solving a linear adjoint problem. The resulting a posteriori error estimates provide the basis of a feedback process for successively constructing economical meshes and corresponding error bounds tailored to the particular goal of the computation. This approach, called the ‘dual-weighted-residual method’, is introduced initially within an abstract functional analytic setting, and is then developed in detail for several model situations featuring the characteristic properties of elliptic, parabolic and hyperbolic problems. After having discussed the basic properties of duality-based adaptivity, we demonstrate the potential of this approach by presenting a selection of results obtained for practical test cases. These include problems from viscous fluid flow, chemically reactive flow, elasto-plasticity, radiative transfer, and optimal control. Throughout the paper, open theoretical and practical problems are stated together with references to the relevant literature.

[1]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[2]  Guido Kanschat,et al.  Parallel and adaptive Galerkin methods for radiative transfer problems , 1996 .

[3]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[4]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[5]  Anthony T. Patera,et al.  A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .

[6]  Rolf Rannacher,et al.  A posteriori error estimation in least-squares stabilized finite element schemes , 1998 .

[7]  Endre Süli,et al.  Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .

[8]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[9]  R. Rannacher Error Control in Finite Element Computations , 1999 .

[10]  Mats G. Larson,et al.  Adaptive multilevel finite element approximations of semilinear elliptic boundary value problems , 1999, Numerische Mathematik.

[11]  Rolf Rannacher,et al.  Foundations of Computational Mathematics: Adaptive finite element methods for flow problems , 2001 .

[12]  Kenneth Eriksson,et al.  An adaptive finite element method for linear elliptic problems , 1988 .

[13]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[14]  Jacques Rappaz,et al.  Error estimates and adaptive finite elements for nonlinear diffusion-convection problems , 1996 .

[15]  Rolf Rannacher,et al.  On Error Control in CFD , 1994 .

[16]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[17]  Claes Johnson,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .

[18]  Roland Becker,et al.  Multigrid techniques for finite elements on locally refined meshes , 2000, Numer. Linear Algebra Appl..

[19]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[20]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[21]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[22]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[23]  . Wehrse,et al.  RECENT WORK IN HEIDELBERG ON THE SOLUTIONOF THE RADIATIVE TRANSFER EQUATIONR , 1999 .

[24]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems , 1994 .

[25]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[26]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[27]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[28]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[29]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[30]  J. Oden,et al.  An a posteriori error estimate for finite element approximations of the Navier-Stokes equations , 1994 .

[31]  Kenneth Eriksson,et al.  Adaptive Finite Element Methods for Parabolic Problems VI: Analytic Semigroups , 1998 .

[32]  Ivo Babuška,et al.  The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .

[33]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[34]  Rolf Rannacher,et al.  An Adaptive Finite Element Method for Unsteady Convection-Dominated Flows with Stiff Source Terms , 1999, SIAM J. Sci. Comput..

[35]  F. Suttmeier,et al.  An adaptive displacement/pressure finite element scheme for treating incompressibility effects in elasto‐plastic materials , 2001 .

[36]  Rolf Rannacher,et al.  Detailed Numerical Simulations in Flow Reactors: A New Approach in Measuring Absolute Rate Constants , 1996 .

[37]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[38]  Anthony T. Patera,et al.  A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .

[39]  Rolf Rannacher,et al.  A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .

[40]  Nils-Erik Wiberg,et al.  Adaptive procedure with superconvergent patch recovery for linear parabolic problems , 1997 .

[41]  S. Ohnimus,et al.  Coupled model- and solution-adaptivity in the finite-element method , 1997 .

[42]  Rolf Rannacher,et al.  Adaptive finite element methods for low-mach-number flows with chemical reactions , 1999 .

[43]  Kenneth Eriksson,et al.  Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .

[44]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[45]  Peter Hansbo,et al.  Adaptive finite element methods for small strain elasto-plasticity , 1992 .

[46]  Donald Estep,et al.  The discontinuous Galerkin method for semilinear parabolic problems , 1993 .

[47]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[48]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .

[49]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[50]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[51]  J. Rappaz,et al.  Numerical analysis for nonlinear and bifurcation problems , 1997 .

[52]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[53]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[54]  Willy Dörfler,et al.  An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..

[55]  H. Blum,et al.  An adaptive finite element discretisation¶for a simplified Signorini problem , 2000 .

[56]  Rolf Rannacher,et al.  Fast and reliable solution of the Navier–Stokes equations including chemistry , 1999 .

[57]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[58]  Heribert Blum,et al.  Weighted Error Estimates for Finite Element Solutions of Variational Inequalities , 2000, Computing.

[59]  Guido Kanschat,et al.  SOLUTION OF MULTI-DIMENSIONAL RADIATIVE TRANSFER PROBLEMS ON PARALLEL COMPUTERS , 2000 .

[60]  F. Suttmeier General approach for a posteriori error estimates for finite element solutions of variational inequalities , 2001 .

[61]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[62]  Claes Johnson,et al.  Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .

[63]  Ivo Babuška,et al.  A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains , 1996 .

[64]  Roland Becker,et al.  Mesh Adaptation for Stationary Flow Control , 2001 .

[65]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[66]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .

[67]  J. Tinsley Oden,et al.  A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .

[68]  Rolf Rannacher,et al.  Finite element approximation of the acoustic wave equation: error control and mesh adaptation , 1999 .

[69]  D. Estep,et al.  Global error control for the continuous Galerkin finite element method for ordinary differential equations , 1994 .

[70]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[71]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[72]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[73]  Anthony T. Patera,et al.  Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .

[74]  Rolf Rannacher,et al.  A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity , 1999 .

[75]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[76]  Robert Sandboge,et al.  Adaptive Finite Element Methods for Reactive Flow Problems , 1996 .

[77]  Ralf Hartmann Adaptive Fe Methods for Conservation Equations , 2001 .

[78]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .