Investigation of auto-ignition in turbulent methanol spray flames using Large Eddy Simulation

Abstract Large Eddy Simulation (LES) of a recently developed series of auto-igniting methanol spray flames in a vitiated coflow are presented in the paper. The Eulerian stochastic field method and a reduced chemical mechanism involving 18 reactive species are employed to characterise the turbulent reactive gas phase. A fully coupled Lagrangian particle method is applied to represent the dispersed phase. The gas phase and droplet statistics show good overall agreement with the measurements, confirming that droplet dispersion and evaporation are adequately represented. Comparison of snapshots with images of OH and CH2O from laser induced fluorescence (LIF) highlight, that the employed methodology is also able to capture a range of key features that characterise this complex flame series. This includes the correct lift-off behaviour, the formation of OH that mark the initiation of auto-ignition kernels upstream of the flame base and the presence of “most reactive mixtures” at lean conditions. This agreement with experimental data enables the exploration of mechanisms of auto-ignition in sprays.

[1]  R. Bilger A mixture fraction framework for the theory and modeling of droplets and sprays , 2011 .

[2]  R. Barlow,et al.  Simultaneous Laser Raman-rayleigh-lif Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow , 2002 .

[3]  Salvador Navarro-Martinez,et al.  Large eddy simulation of autoignition with a subgrid probability density function method , 2007 .

[4]  A. Masri,et al.  The Structure of the Auto-Ignition Region of Turbulent Dilute Methanol Sprays Issuing in a Vitiated Co-flow , 2012 .

[5]  O. Stein,et al.  LES-CMC of a dilute acetone spray flame , 2013 .

[6]  Salvador Navarro-Martinez,et al.  Numerical investigation of swirling kerosene spray flames using Large Eddy Simulation , 2012 .

[7]  E. Mastorakos,et al.  DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers , 2010 .

[8]  Johannes Janicka,et al.  Synthetic turbulence inflow conditions for large-eddy simulation , 2006 .

[9]  S. Sreedhara,et al.  Autoignition in a non-premixed medium: DNS studies on the effects of three-dimensional turbulence , 2002 .

[10]  Dominique Thévenin,et al.  Autoignition of turbulent non-premixed flames investigated using direct numerical simulations , 2002 .

[11]  Olivier Soulard,et al.  Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  W. Jones,et al.  Large Eddy Simulation of a swirl stabilized spray flame , 2011 .

[13]  Anoop Singh,et al.  Production of liquid biofuels from renewable resources , 2011 .

[14]  Robert J. Kee,et al.  On reduced mechanisms for methaneair combustion in nonpremixed flames , 1990 .

[15]  Ugo Piomelli,et al.  Large-eddy simulation of rotating channel flows using a localized dynamic model , 1995 .

[16]  L. Vervisch,et al.  Triple flames and partially premixed combustion in autoignition of non-premixed turbulent mixtures , 1996 .

[17]  Joseph C. Oefelein,et al.  Large eddy simulation of swirling particle-laden flow in a model axisymmetric combustor , 2007 .

[18]  Robert L. Gordon,et al.  Heat release rate as represented by [OH] × [CH2O] and its role in autoignition , 2009 .

[19]  A. Cavaliere,et al.  Laser Excited Emission and Chemiluminescence from Autoigniting Spray , 2000 .

[20]  T. Poinsot,et al.  Numerical simulations of autoignition in turbulent mixing flows , 1997 .

[21]  V. N. Prasad,et al.  Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method , 2010 .

[22]  Stephen B. Pope,et al.  Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D) , 2004 .

[23]  A. Sadiki,et al.  Partially premixed reacting acetone spray using LES and FGM tabulated chemistry , 2012 .

[24]  C. Dopazo,et al.  Functional formulation of nonisothermal turbulent reactive flows , 1974 .

[25]  Christophe Duwig,et al.  Large Eddy Simulations of a piloted lean premix jet flame using finite-rate chemistry , 2011 .

[26]  Ayhan Demirbas,et al.  Progress and recent trends in biofuels , 2007 .

[27]  W. Jones,et al.  Particle acceleration in turbulent flows: A class of nonlinear stochastic models for intermittency , 2007 .

[28]  Suresh Menon,et al.  Simulation of spray–turbulence–flame interactions in a lean direct injection combustor , 2008 .

[29]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[30]  W. P. Jones,et al.  Large-eddy simulation of particle-laden turbulent flows , 2008, Journal of Fluid Mechanics.

[31]  Andrew P. Wandel,et al.  Direct numerical simulations of autoignition in turbulent two-phase flows , 2009 .

[32]  Jacqueline H. Chen,et al.  Direct numerical simulation of autoignition in non- homogeneous hydrogen-air mixtures , 2003 .

[33]  Rs Cant,et al.  A flame surface density approach to large-eddy simulation of premixed turbulent combustion , 2000 .

[34]  James J. Riley,et al.  Testing of mixing models for Monte Carlo probability density function simulations , 2005 .

[35]  Heinz Pitsch,et al.  An accurate conservative level set/ghost fluid method for simulating turbulent atomization , 2008, J. Comput. Phys..

[36]  Heinz Pitsch,et al.  Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. A priori study and presumed PDF closure , 2008 .

[37]  W. P. Jones,et al.  Large Eddy Simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method , 2013 .

[38]  A. Kronenburg,et al.  Conditional moment closure modeling of extinction and re-ignition in turbulent non-premixed flames , 2005 .

[39]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[40]  S. Aggarwal A review of spray ignition phenomena: Present status and future research , 1998 .

[41]  G. Adomeit,et al.  Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions , 1996 .

[42]  C. Markides,et al.  An experimental study of hydrogen autoignition in a turbulent co-flow of heated air , 2005 .

[43]  Chung King Law,et al.  Ignition of hydrogen-air mixing layer in turbulent flows , 1998 .

[44]  Heinz Pitsch,et al.  A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry , 2007 .

[45]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[46]  W. Jones,et al.  Stochastic multiple mapping conditioning for a piloted, turbulent jet diffusion flame , 2011 .

[47]  A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames , 2009 .

[48]  C. Rutland,et al.  Direct numerical simulation of ignition in turbulent n-heptane liquid-fuel spray jets , 2007 .

[49]  V. N. Prasad,et al.  LES-pdf simulation of a spark ignited turbulent methane jet , 2011 .

[50]  Patrick Jenny,et al.  Modeling of turbulent dilute spray combustion , 2012 .

[51]  Christer Fureby,et al.  LES studies of the flow in a swirl gas combustor , 2005 .

[52]  L. Valiño,et al.  A Field Monte Carlo Formulation for Calculating the Probability Density Function of a Single Scalar in a Turbulent Flow , 1998 .

[53]  W. E. Ranz,et al.  Evaporation from drops , 1952 .

[54]  A. Masri,et al.  LES/probability density function approach for the simulation of an ethanol spray flame , 2013 .

[55]  W. Ranz Evaporation from drops : Part II , 1952 .

[56]  Robert W. Dibble,et al.  The structure of turbulent nonpremixed flames of methanol over a range of mixing rates , 1992 .

[57]  E. Mastorakos Ignition of turbulent non-premixed flames , 2009 .

[58]  M. P. Meyer,et al.  A dimensionally reduced reaction mechanism for methanol oxidation , 2002 .

[59]  P. Moin,et al.  Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion , 2004, Journal of Fluid Mechanics.

[60]  W. Jones,et al.  Large Eddy Simulation of a Methane–Air Diffusion Flame , 2008 .

[61]  W. Jones,et al.  Large Eddy Simulation of the two-phase flow in an experimental swirl-stabilized burner , 2012 .

[62]  V. N. Prasad,et al.  Investigation of extinction and re-ignition in piloted turbulent non-premixed methane–air flames using LES and high-speed OH-LIF , 2013 .

[63]  T. Takeno,et al.  A numerical analysis of the structure of a turbulent hydrogen jet lifted flame , 2002 .

[64]  Tarek Echekki,et al.  HIGH-TEMPERATURE COMBUSTION IN AUTOIGNITING NON-HOMOGENEOUS HYDROGEN/AIR MIXTURES , 2002 .

[65]  S. Navarro-Martinez,et al.  Conditional Moment Closure for Large Eddy Simulations , 2005 .

[66]  W. Sirignano Fuel droplet vaporization and spray combustion theory , 1983 .

[67]  S. Menon,et al.  LES of spray combustion in swirling flows , 2002 .

[68]  A. Masri,et al.  Simultaneous Rayleigh temperature, OH-and CH2O-LIF imaging of methane jets in a vitiated coflow , 2008 .

[69]  C. Duwig,et al.  Large Eddy Simulation of a H2/N2 Lifted Flame in a Vitiated Co-Flow , 2008 .

[70]  V. N. Prasad,et al.  LES of a turbulent premixed swirl burner using the Eulerian stochastic field method , 2012 .

[71]  A. Masri,et al.  Turbulent piloted dilute spray flames: Flow fields and droplet dynamics , 2012 .

[72]  W. Sirignano A general superscalar for the combustion of liquid fuels , 2002 .

[73]  Josette Bellan,et al.  Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations , 1998 .

[74]  M. C. Yuen,et al.  On Drag of Evaporating Liquid Droplets , 1976 .

[75]  A. Masri,et al.  A new burner for studying auto-ignition in turbulent dilute sprays , 2011 .

[76]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[77]  Analysis of combustion regimes and conditional statistics of autoigniting turbulent n-heptane sprays , 2011 .

[78]  Feng Gao,et al.  A large‐eddy simulation scheme for turbulent reacting flows , 1993 .

[79]  Thierry Poinsot,et al.  Eulerian and Lagrangian spray simulations of an aeronautical multipoint injector , 2011 .