Languages recognized by nondeterministic quantum finite automata

The nondeterministic quantum finite automaton (NQFA) is the only known case where a one-way quantum finite automaton (QFA) model has been shown to be strictly superior in terms of language recognition power to its probabilistic counterpart. We give a characterization of the class of languages recognized by NQFA's, demonstrating that it is equal to the class of exclusive stochastic languages. We also characterize the class of languages that are recognized necessarily by two-sided error by QFA's. It is shown that these classes remain the same when the QFA's used in their definitions are replaced by several different model variants that have appeared in the literature. We prove several closure properties of the related classes. The ramifications of these results about classical and quantum sublogarithmic space complexity classes are examined.

[1]  Paavo Turakainen,et al.  Generalized automata and stochastic languages , 1969 .

[2]  Phan Dinh Dieu,et al.  On a Class of Stochastic Languages , 1971 .

[3]  R. G. Bukharaev Theory of probabilistic automata , 1968 .

[4]  A. C. Cem Say,et al.  Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.

[5]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[6]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[7]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[8]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[9]  Massimo Pica Ciamarra Quantum Reversibility and a New Model of Quantum Automaton , 2001, FCT.

[10]  Kurt Mehlhorn,et al.  A Lower Bound for the Nondeterministic Space Complexity of Context-Free Recognition , 1992, Inf. Process. Lett..

[11]  Alex Brodsky Models and characterizations of 1-way quantum finite automata , 1998 .

[12]  Azaria Paz,et al.  Introduction to probabilistic automata (Computer science and applied mathematics) , 1971 .

[13]  Paavo Turakainen Some Closure Properties of the Family of Stochastic Languages , 1971, Inf. Control..

[14]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[15]  Michel Fliess,et al.  Propriétés booléennes des langages stochastiques , 1973, Mathematical systems theory.

[16]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[17]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[18]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[19]  John Watrous,et al.  Space-Bounded Quantum Complexity , 1999, J. Comput. Syst. Sci..

[20]  Mika Hirvensalo,et al.  Various Aspects of Finite Quantum Automata , 2008, Developments in Language Theory.

[21]  Daowen Qiu,et al.  Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..

[22]  Rusins Freivalds Languages Recognizable by Quantum Finite Automata , 2005, CIAA.

[23]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[24]  A. C. Cem Say,et al.  Succinctness of two-way probabilistic and quantum finite automata , 2009, Discret. Math. Theor. Comput. Sci..

[25]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..

[26]  Richard J. Lipton,et al.  Word Problems Solvable in Logspace , 1977, JACM.

[27]  Alberto Bertoni,et al.  Analogies and di"erences between quantum and stochastic automata , 2001 .

[28]  Andrew Chi-Chih Yao,et al.  NQPC = co-C=P , 1999, Inf. Process. Lett..

[29]  YA. YA. KANEPS,et al.  Stochasticity of the languages acceptable by two-way finite probabilistic automata , 1991 .

[30]  Flavio D'Alessandro,et al.  A Non-commutativity Statement for Algebraic Quaternions , 2006, Int. J. Algebra Comput..

[31]  Bala Ravikumar Some Observations on 2-way Probabilistic Finite Automata , 1992, FSTTCS.

[32]  Paavo Turakainen On nonstochastic languages and homomorphic images of stochastic languages , 1981, Inf. Sci..

[33]  Paavo Turakainen On languages representable in rational probabilistic automata , 1969 .

[34]  A. C. Cem Say,et al.  Language Recognition by Generalized Quantum Finite Automata with Unbounded Error , 2009, ArXiv.

[35]  Carlo Mereghetti,et al.  Note on the Succinctness of Deterministic, Nondeterministic, Probabilistic and Quantum Finite Automata , 2001, RAIRO Theor. Informatics Appl..

[36]  Michel Fliess Automates stochastiques et séries rationnelles non commutatives , 1972, ICALP.

[37]  Paavo Turakainen,et al.  On Stochastic Languages , 1968, Inf. Control..

[38]  Tsunehiro Yoshinaga On the Power of Non-deterministic Quantum Finite Automata , 2002 .

[39]  Tomoyuki Yamakami,et al.  NQP_{C} = co-C_{=}P , 1998, quant-ph/9812032.

[40]  Kathrin Paschen Quantum finite automata using ancilla qubits , 2000 .

[41]  Stephen N. Cole Real-Time Computation by n-Dimensional Iterative Arrays of Finite-State Machines , 1969, IEEE Trans. Computers.

[42]  Mika Hirvensalo,et al.  Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-Point Languages , 2007, SOFSEM.

[43]  Ioan I. Macarie Closure Properties of Stochastic Languages , 1993 .

[44]  S. Świerczkowski A class of free rotation groups , 1994 .

[45]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[46]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[47]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).