Natural and artificial target recognition by hyperspectral remote sensing data

Recent advances in remote sensing have led the way for the development of hyperspectral sensors and the applications of the hyperspectral data. Hyperspectral remote sensing is a relatively new technology, which is currently being investigated by researchers and scientists with regard to the detection and identification of minerals, terrestrial vegetation, and man-made materials and backgrounds. The airborne hyperspectral imaging data have operationally been used to a number of land-use, natural environment, geology, agriculture and other studies. In this study, airborne hyperspectral imaging data were tested in vegetation and man-made object identification. Natural grassland and artificial grassland, different types of crops, different types of forest and bush, different types of metal slabs in construction project have been precisely classified and greatly identified. In these works, the Operational Modular Imaging Spectrometer (OMIS) provides the imaging spectrometer data. OMIS has 128 spectral bands, including visible, short wave infrared, middle infrared and thermal infrared spectral region. Results suggest that hyperspectral imaging data, especially with short wave infrared and thermal infrared wavelength, have broad application perspectives in object identification.