Consensus rule for wheat cultivar classification on VL, VNIR and SWIR imaging

[1]  Silvia Serranti,et al.  The development of a hyperspectral imaging method for the detection of Fusarium-damaged, yellow berry and vitreous Italian durum wheat kernels , 2013 .

[2]  M. Bilginer Gülmezoglu,et al.  The common vector approach and its relation to principal component analysis , 2001, IEEE Trans. Speech Audio Process..

[3]  J. Hernández-Hierro,et al.  Chilean flour and wheat grain: tracing their origin using near infrared spectroscopy and chemometrics. , 2014, Food chemistry.

[4]  Wenyu Liu,et al.  Bag of contour fragments for robust shape classification , 2014, Pattern Recognit..

[5]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[6]  Hakan Cevikalp,et al.  Return of the king: The Fourier transform based descriptor for visual object classification , 2013, 2013 21st Signal Processing and Communications Applications Conference (SIU).

[7]  Hong Zhang,et al.  Rice Blast Disease Recognition Using a Deep Convolutional Neural Network , 2019, Scientific Reports.

[8]  Noel D.G. White,et al.  Fungal Damage Detection in Wheat Using Short-Wave Near-Infrared Hyperspectral and Digital Colour Imaging , 2012 .

[9]  Hengyou Wang,et al.  Separable vocabulary and feature fusion for image retrieval based on sparse representation , 2017, Neurocomputing.

[10]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[11]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[12]  M. Shahin,et al.  Original paper: Detection of Fusarium damaged kernels in Canada Western Red Spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis , 2011 .

[13]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Stephen J. Symons,et al.  Detection of sprout damage in Canada Western Red Spring wheat with multiple wavebands using visible/near-infrared hyperspectral imaging , 2010 .

[15]  Hamid Reza Pourreza,et al.  Identification of nine Iranian wheat seed varieties by textural analysis with image processing , 2012 .

[16]  Seydi Aydoğan,et al.  Bazı Makarnalık ve Ekmeklik Buğday Çeşitlerinin Kalite Özelliklerinin Araştırılması , 2019, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi.

[17]  Moon S. Kim,et al.  Short wave infrared (SWIR) hyperspectral imaging technique for examination of aflatoxin B1 (AFB1) on corn kernels , 2015 .

[18]  Sahin Isik,et al.  Wheat grain classification by using dense SIFT features with SVM classifier , 2016, Comput. Electron. Agric..

[19]  Guangfeng Lin,et al.  Visual feature coding based on heterogeneous structure fusion for image classification , 2017, Inf. Fusion.

[20]  Kemal Özkan,et al.  A novel multi-scale and multi-expert edge detector based on common vector approach , 2015 .

[21]  D. Jayas,et al.  Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging , 2017 .

[22]  R. Carle,et al.  Near-infrared reflectance spectroscopy for the rapid discrimination of kernels and flours of different wheat species , 2016 .

[23]  D. Jayas,et al.  Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images , 2008 .

[24]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[25]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Jayme Garcia Arnal Barbedo,et al.  Detecting Fusarium head blight in wheat kernels using hyperspectral imaging , 2015 .

[27]  Sahin Isik,et al.  Multispectral image fusion based on the common vector approach , 2016, 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA).

[28]  Seydi Aydoğan,et al.  Ekmeklik Buğday Çeşitlerinin Verim ve Verim Öğeleri ile Bazı Kalite Özelliklerinin Belirlenmesi , 2017 .

[29]  Stephen J. Symons,et al.  Using a Short Wavelength Infrared (SWIR) hyperspectral imaging system to predict alpha amylase activity in individual Canadian western wheat kernels , 2009 .

[30]  Kemal Özkan,et al.  Identification of wheat kernels by fusion of RGB, SWIR, and VNIR samples. , 2019, Journal of the science of food and agriculture.

[31]  Zafer Cömert,et al.  Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach , 2019, Comput. Electron. Agric..

[32]  Hakan Cevikalp,et al.  Discriminative common vectors for face recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Ömer Nezih Gerek,et al.  A new implementation of common matrix approach using third-order tensors for face recognition , 2011, Expert Syst. Appl..

[34]  Xing Xu,et al.  Exploiting score distribution for heterogenous feature fusion in image classification , 2017, Neurocomputing.

[35]  Komal Kumar Bhatia,et al.  Image-based wheat grain classification using convolutional neural network , 2021, Multimedia Tools and Applications.

[36]  Kemal Özkan,et al.  A new subspace based solution to background modelling and change detection , 2016 .

[37]  D. Jayas,et al.  Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. , 2009 .