An unfolding theory approach to bursting in fast–slow systems

[1]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[2]  J. Rinzel Repetitive activity and hopf bifurcation under point-stimulation for a simple FitzHugh-Nagumo nerve conduction model , 1977, Journal of mathematical biology.

[3]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[4]  E. C. Zeeman,et al.  Differential equations for the heartbeat and nerve impulse , 1973 .

[5]  J. Rinzel,et al.  Dissection of a model for neuronal parabolic bursting , 1987, Journal of mathematical biology.

[6]  Stephen Schecter,et al.  The saddle-node separatrix-loop bifurcation , 1987 .

[7]  S. Gueron,et al.  Mapping the dynamics of a bursting neuron. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  G. Iooss,et al.  Perturbed Homoclinic Solutions in Reversible 1:1 Resonance Vector Fields , 1993 .

[9]  John Guckenheimer,et al.  On a codimension two bifurcation , 1981 .

[10]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[11]  Lee A. Segel,et al.  A basic biophysical model for bursting neurons , 1993, Biological Cybernetics.

[12]  F. Takens Constrained equations; a study of implicit differential equations and their discontinuous solutions , 1976 .

[13]  R. Bertram,et al.  Topological and phenomenological classification of bursting oscillations. , 1995, Bulletin of mathematical biology.

[14]  Floris Takens,et al.  Singularities of vector fields , 1974 .

[15]  N. Kopell,et al.  Parabolic bursting revisited , 1996, Journal of mathematical biology.

[16]  G. de Vries,et al.  Multiple Bifurcations in a Polynomial Model of Bursting Oscillations , 1998 .

[17]  John Rinzel,et al.  Analysis of bursting in a thalamic neuron model , 1994, Biological Cybernetics.

[18]  M. Golubitsky,et al.  The Recognition Problem , 1985 .

[19]  J. Rinzel,et al.  Analysis of an autonomous phase model for neuronal parabolic bursting , 1995, Journal of mathematical biology.

[20]  Charles M. Gray,et al.  Simulations of Intrinsically Bursting Neocortical Pyramidal Neurons , 1994, Neural Computation.

[21]  F. Diener,et al.  Retard à la bifurcation : du local au global , 1990 .

[22]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .