Order, Chaos and Algorithms
暂无分享,去创建一个
[1] Reinhard Diestel,et al. Two Short Proofs Concerning Tree-Decompositions , 2002, Combinatorics, Probability and Computing.
[2] Peter C. Fishburn,et al. Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..
[3] Hans L. Bodlaender,et al. A Tourist Guide through Treewidth , 1993, Acta Cybern..
[4] Jun Qin,et al. Coloring interval graphs with first-fit , 1995, Discret. Math..
[5] Robin Thomas,et al. A menger-like property of tree-width: The finite case , 1990, J. Comb. Theory, Ser. B.
[6] Jörg Flum,et al. Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.
[7] Marek Chrobak,et al. On Some Packing Problem Related to Dynamic Storage Allocation , 1988, RAIRO Theor. Informatics Appl..
[8] J. Fouhy. Computational Experiments on Graph Width Metrics , 2003 .
[9] Stephen G. Simpson,et al. Logic and Combinatorics , 1987 .
[10] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[11] Robert E. Tarjan,et al. Amortized efficiency of list update and paging rules , 1985, CACM.
[12] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[13] Vojtěch Rödl,et al. Mathematics of Ramsey Theory , 1991 .
[14] Bruno Courcelle,et al. Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[15] G. Dirac,et al. A Theorem of Kuratowski , 1954 .
[16] Aaron Robertson,et al. Ramsey Theory on the Integers , 2014 .
[17] Catherine McCartin,et al. Online Problems, Pathwidth, and Persistence , 2004, IWPEC.
[18] Craig A. Tovey,et al. Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families , 1992, Algorithmica.
[19] Dimitrios M. Thilikos,et al. Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..
[20] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[21] J. Paris. A Mathematical Incompleteness in Peano Arithmetic , 1977 .
[22] Hans L. Bodlaender,et al. Discovering Treewidth , 2005, SOFSEM.
[23] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[24] Saharon Shelah,et al. Primitive recursive bounds for van der Waerden numbers , 1988 .
[25] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[26] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[27] C. Kuratowski. Sur le problème des courbes gauches en Topologie , 1930 .
[28] I. Rival. Graphs and Order , 1985 .
[29] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[30] W. T. Gowers,et al. Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .
[31] Ravindra K. Ahuja,et al. A Fast and Simple Algorithm for the Maximum Flow Problem , 2011, Oper. Res..
[32] David J. Spiegelhalter,et al. Local computations with probabilities on graphical structures and their application to expert systems , 1990 .
[33] H. A. Kierstead,et al. The Linearity of First-Fit Coloring of Interval Graphs , 1988, SIAM J. Discret. Math..
[34] J. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .
[35] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.