Order, Chaos and Algorithms

These notes have quite uneven levels of depth. They were prepared for a course to talented undergraduates at the Nangyang University of Technology for May 2006. The idea is that several different courses could be made from the notes. For example, the flow material could be covered quickly, only pointing at the main ideas, such as max-flow/min cut and applications, for really advanced students. Then the idea would be to move on to the WQO type material and treewidth. On the other hand, with less advanced students more time could be spent in a thorough treatment on this easier material, with less time on the more advanced cutting-edge material; but allowing the less advanced student to have a tour d’horizon.

[1]  Reinhard Diestel,et al.  Two Short Proofs Concerning Tree-Decompositions , 2002, Combinatorics, Probability and Computing.

[2]  Peter C. Fishburn,et al.  Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..

[3]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[4]  Jun Qin,et al.  Coloring interval graphs with first-fit , 1995, Discret. Math..

[5]  Robin Thomas,et al.  A menger-like property of tree-width: The finite case , 1990, J. Comb. Theory, Ser. B.

[6]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[7]  Marek Chrobak,et al.  On Some Packing Problem Related to Dynamic Storage Allocation , 1988, RAIRO Theor. Informatics Appl..

[8]  J. Fouhy Computational Experiments on Graph Width Metrics , 2003 .

[9]  Stephen G. Simpson,et al.  Logic and Combinatorics , 1987 .

[10]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[11]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[12]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[13]  Vojtěch Rödl,et al.  Mathematics of Ramsey Theory , 1991 .

[14]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[15]  G. Dirac,et al.  A Theorem of Kuratowski , 1954 .

[16]  Aaron Robertson,et al.  Ramsey Theory on the Integers , 2014 .

[17]  Catherine McCartin,et al.  Online Problems, Pathwidth, and Persistence , 2004, IWPEC.

[18]  Craig A. Tovey,et al.  Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families , 1992, Algorithmica.

[19]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[20]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[21]  J. Paris A Mathematical Incompleteness in Peano Arithmetic , 1977 .

[22]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[23]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[24]  Saharon Shelah,et al.  Primitive recursive bounds for van der Waerden numbers , 1988 .

[25]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[26]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[27]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[28]  I. Rival Graphs and Order , 1985 .

[29]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[30]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[31]  Ravindra K. Ahuja,et al.  A Fast and Simple Algorithm for the Maximum Flow Problem , 2011, Oper. Res..

[32]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[33]  H. A. Kierstead,et al.  The Linearity of First-Fit Coloring of Interval Graphs , 1988, SIAM J. Discret. Math..

[34]  J. Kruskal Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .

[35]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.