Subspace algorithms for the stochastic identification problem,
暂无分享,去创建一个
[1] Wallace E. Larimore,et al. Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.
[2] John G. Proakis,et al. Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..
[3] Gene H. Golub,et al. Generalized singular value decompositions: a proposal for a standardized nomenclature , 1989 .
[4] H. Hotelling. Relations Between Two Sets of Variates , 1936 .
[5] C. Loan. Generalizing the Singular Value Decomposition , 1976 .
[6] H. Akaike. Markovian Representation of Stochastic Processes by Canonical Variables , 1975 .
[7] Michel Verhaegen,et al. A Novel Non-Iterative Mimo State Space Model Identification Technique , 1991 .
[8] Sun-Yuan Kung,et al. A new identification and model reduction algorithm via singular value decomposition , 1978 .
[9] K. Arun,et al. Balanced approximation of stochastic systems , 1990 .
[10] M. Saunders,et al. Towards a Generalized Singular Value Decomposition , 1981 .
[11] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[12] H. Zeiger,et al. Approximate linear realizations of given dimension via Ho's algorithm , 1974 .
[13] P. Faurre. Stochastic Realization Algorithms , 1976 .
[14] C. Jordan. Essai sur la géométrie à $n$ dimensions , 1875 .