25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters

Scientists are exploring elastic and soft forms of robots, electronic skin and energy harvesters, dreaming to mimic nature and to enable novel applications in wide fields, from consumer and mobile appliances to biomedical systems, sports and healthcare. All conceivable classes of materials with a wide range of mechanical, physical and chemical properties are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before are achieved. In this review we discuss soft robots which allow actuation with several degrees of freedom. We show that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space. We introduce latest research examples in sensor skin development and discuss ultraflexible electronic circuits, light emitting diodes and solar cells as examples. Additional functionalities of sensor skin, such as visual sensors inspired by animal eyes, camouflage, self‐cleaning and healing and on‐skin energy storage and generation are briefly reviewed. Finally, we discuss a paradigm change in energy harvesting, away from hard energy generators to soft ones based on dielectric elastomers. Such systems are shown to work with high energy of conversion, making them potentially interesting for harvesting mechanical energy from human gait, winds and ocean waves.

[1]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[2]  Zhang,et al.  Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer , 1998, Science.

[3]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[4]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[5]  Lambert Schomaker,et al.  2000 IEEE/RSJ International Conference On Intelligent Robots And Systems , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[6]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[7]  Tobin J. Marks,et al.  Gate Dielectrics for Organic Field‐Effect Transistors: New Opportunities for Organic Electronics , 2005 .

[8]  S. Bauer,et al.  Self-organized minimum-energy structures for dielectric elastomer actuators , 2006 .

[9]  D. Tobin,et al.  Biochemistry of human skin--our brain on the outside. , 2006, Chemical Society reviews.

[10]  T. Ghosh,et al.  Dielectric elastomers as next-generation polymeric actuators. , 2007, Soft matter.

[11]  S. Zwaag Self‐Healing Materials , 2007 .

[12]  David Reinhoudt,et al.  What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. , 2007, Chemical Society reviews.

[13]  S. Bauer,et al.  Energy minimization for self-organized structure formation and actuation , 2007 .

[14]  M. Breese,et al.  Proton beam writing , 2007 .

[15]  Takuzo Aida,et al.  Materials science: The gift of healing , 2008, Nature.

[16]  D. Ratna,et al.  Recent advances in shape memory polymers and composites: a review , 2008 .

[17]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[18]  Z. Suo,et al.  A nonlinear field theory of deformable dielectrics , 2008 .

[19]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[20]  R. Wool Self-healing materials: a review. , 2008, Soft matter.

[21]  D. Wu,et al.  Self-healing polymeric materials: A review of recent developments , 2008 .

[22]  Z. Suo,et al.  Method to analyze programmable deformation of dielectric elastomer layers , 2008 .

[23]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[24]  Zhigang Suo,et al.  Maximal energy that can be converted by a dielectric elastomer generator , 2009 .

[25]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[26]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[27]  Z. Bao,et al.  Organic Thin‐Film Transistors Fabricated on Resorbable Biomaterial Substrates , 2010, Advanced materials.

[28]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[29]  Alvo Aabloo,et al.  Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives , 2010 .

[30]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[31]  D. De Rossi,et al.  Stretching Dielectric Elastomer Performance , 2010, Science.

[32]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[33]  Christian M. Siket,et al.  Arrays of Ultracompliant Electrochemical Dry Gel Cells for Stretchable Electronics , 2010, Advanced materials.

[34]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[35]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[36]  C. Keplinger,et al.  Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability , 2010, Proceedings of the National Academy of Sciences.

[37]  Zhenan Bao,et al.  Organic Semiconductor Growth and Morphology Considerations for Organic Thin‐Film Transistors , 2010, Advanced materials.

[38]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[39]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[40]  Zhigang Suo,et al.  Method for measuring energy generation and efficiency of dielectric elastomer generators , 2011 .

[41]  Seon Jeong Kim,et al.  Torsional Carbon Nanotube Artificial Muscles , 2011, Science.

[42]  Andrew G. Gillies,et al.  Optically-and Thermally-responsive Programmable Materials Based on Carbon Nanotube-hydrogel Polymer Composites , 2022 .

[43]  Yonggang Huang,et al.  Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage , 2011, Advanced materials.

[44]  Qibing Pei,et al.  Intrinsically Stretchable Polymer Light‐Emitting Devices Using Carbon Nanotube‐Polymer Composite Electrodes , 2011, Advanced materials.

[45]  G. Spinks,et al.  Artificial Muscles Based on Polypyrrole/Carbon Nanotube Laminates , 2011, Advanced materials.

[46]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[47]  Zhigang Suo,et al.  Dielectric Elastomer Generators: How Much Energy Can Be Converted? , 2011, IEEE/ASME Transactions on Mechatronics.

[48]  Reinhard Schwödiauer,et al.  Anodized Aluminum Oxide Thin Films for Room‐Temperature‐Processed, Flexible, Low‐Voltage Organic Non‐Volatile Memory Elements with Excellent Charge Retention , 2011, Advanced materials.

[49]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[50]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[51]  I. Anderson,et al.  Soft generators using dielectric elastomers , 2011 .

[52]  D. De Rossi,et al.  Bioinspired Tunable Lens with Muscle‐Like Electroactive Elastomers , 2011 .

[53]  Yonggang Huang,et al.  Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability , 2011, Proceedings of the National Academy of Sciences.

[54]  Quan Zhou,et al.  2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011, San Francisco, CA, USA, September 25-30, 2011 , 2011, IROS.

[55]  T. Kurokawa,et al.  Rapid and Reversible Tuning of Structural Color of a Hydrogel over the Entire Visible Spectrum by Mechanical Stimulation , 2011 .

[56]  Daniel J Chew,et al.  High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation , 2012, Journal of neural engineering.

[57]  Xuanhe Zhao,et al.  Dynamic Electrostatic Lithography: Multiscale On‐Demand Patterning on Large‐Area Curved Surfaces , 2012, Advanced materials.

[58]  Silvain Michel,et al.  Self-healing electrodes for dielectric elastomer actuators , 2012 .

[59]  Zhibin Yu,et al.  Compliant Silver Nanowire‐Polymer Composite Electrodes for Bistable Large Strain Actuation , 2012, Advanced materials.

[60]  Mario Caironi,et al.  Charge Injection in Solution‐Processed Organic Field‐Effect Transistors: Physics, Models and Characterization Methods , 2012, Advanced materials.

[61]  Choon Chiang Foo,et al.  Giant, voltage-actuated deformation of a dielectric elastomer under dead load , 2012 .

[62]  S. Wagner,et al.  Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity , 2012, Advanced functional materials.

[63]  Zhibin Yu,et al.  Bistable Large‐Strain Actuation of Interpenetrating Polymer Networks , 2012, Advanced materials.

[64]  Fumiya Iida,et al.  The challenges ahead for bio-inspired 'soft' robotics , 2012, CACM.

[65]  Guillaume Ardoise,et al.  Standing wave tube electro active polymer wave energy converter , 2012, Smart Structures.

[66]  Zhigang Suo,et al.  Dielectric elastomer actuators with elastomeric electrodes , 2012 .

[67]  Tadej Bajd,et al.  Robot Mechanisms , 2012 .

[68]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[69]  C. Keplinger,et al.  Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation , 2012 .

[70]  A. W. Hassel,et al.  Ultra‐thin anodic alumina capacitor films for plastic electronics , 2012 .

[71]  T. Someya,et al.  Stretchable organic integrated circuits for large-area electronic skin surfaces , 2012 .

[72]  T. F. Otero,et al.  Biomimetic electrochemistry from conducting polymers. A review: Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces , 2012 .

[73]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[74]  H. Katz,et al.  Organic transistors in the new decade: Toward n-channel, printed, and stabilized devices , 2012 .

[75]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[76]  Howie N. Chu,et al.  Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric , 2012, Advanced materials.

[77]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[78]  S. Bauer,et al.  Materials for stretchable electronics , 2012 .

[79]  Jonathan Rossiter,et al.  Harnessing electromechanical membrane wrinkling for actuation , 2012 .

[80]  Jonathan Rossiter,et al.  Biomimetic chromatophores for camouflage and soft active surfaces , 2012, Bioinspiration & biomimetics.

[81]  Ron Pelrine,et al.  Dielectric elastomers: Stretching the capabilities of energy harvesting , 2012 .

[82]  C. Keplinger,et al.  Electric-field-tuned color in photonic crystal elastomers , 2012 .

[83]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[84]  Eduardo Mendes,et al.  Role of pH gradients in the actuation of electro-responsive polyelectrolyte gels , 2012 .

[85]  Mihai Irimia-Vladu,et al.  Indigo ‐ A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits , 2012, Advanced materials.

[86]  Martijn Kemerink,et al.  Operational Stability of Organic Field‐Effect Transistors , 2012, Advanced materials.

[87]  G. Whitesides,et al.  Elastomeric Origami: Programmable Paper‐Elastomer Composites as Pneumatic Actuators , 2012 .

[88]  Z. Suo Mechanics of stretchable electronics and soft machines , 2012 .

[89]  Jan Vanfleteren,et al.  Printed circuit board technology inspired stretchable circuits , 2012 .

[90]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[91]  T. Someya,et al.  Organic transistors with high thermal stability for medical applications , 2012, Nature Communications.

[92]  Hee Taek Yi,et al.  Ultra-flexible solution-processed organic field-effect transistors , 2012, Nature Communications.

[93]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[94]  John A. Rogers,et al.  Materials for stretchable electronics in bioinspired and biointegrated devices , 2012 .

[95]  Joachim Wagner,et al.  New DEA materials by organic modification of silicone and polyurethane networks , 2013, Smart Structures.

[96]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[97]  Zhiguang Guo,et al.  Biomimetic photonic materials with tunable structural colors. , 2013, Journal of colloid and interface science.

[98]  C. Keplinger,et al.  Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability , 2013 .

[99]  H. Shea,et al.  Improved electromechanical behavior in castable dielectric elastomer actuators , 2013 .

[100]  P. Meredith,et al.  Electronic and optoelectronic materials and devices inspired by nature , 2013, Reports on progress in physics. Physical Society.

[101]  Richard Moser,et al.  Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics , 2013 .

[102]  Viktor Malyarchuk,et al.  Digital cameras with designs inspired by the arthropod eye , 2013, Nature.

[103]  Jae-Woong Jeong,et al.  Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics , 2013 .

[104]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[105]  M. Kaltenbrunner,et al.  Breakthroughs in Photonics 2012: Large-Area Ultrathin Photonics , 2013, IEEE Photonics Journal.

[106]  P. Steeneken,et al.  Voltage‐Controlled Surface Wrinkling of Elastomeric Coatings , 2013, Advanced materials.

[107]  Yonggang Huang,et al.  Multifunctional Epidermal Electronics Printed Directly Onto the Skin , 2013, Advanced materials.

[108]  Qibing Pei,et al.  Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes , 2013 .

[109]  Xuanhe Zhao,et al.  Bioinspired Surfaces with Dynamic Topography for Active Control of Biofouling , 2013, Advanced materials.

[110]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[111]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[112]  Mihai Irimia-Vladu,et al.  Hydrogen‐Bonded Semiconducting Pigments for Air‐Stable Field‐Effect Transistors , 2013, Advanced materials.

[113]  Z. Suo,et al.  Maximizing the Energy Density of Dielectric Elastomer Generators Using Equi‐Biaxial Loading , 2013 .

[114]  P. Leleux,et al.  High transconductance organic electrochemical transistors , 2013, Nature Communications.

[115]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[116]  Nicola Pugno,et al.  Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene , 2012, Nature materials.

[117]  Bharat Bhushan,et al.  Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity , 2013 .

[118]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[119]  P. Leleux,et al.  In vivo recordings of brain activity using organic transistors , 2013, Nature Communications.

[120]  Wi Hyoung Lee,et al.  Recent advances in organic transistor printing processes. , 2013, ACS applied materials & interfaces.

[121]  Takao Someya,et al.  Flexible Low‐Voltage Organic Transistors with High Thermal Stability at 250 °C , 2013, Advanced materials.

[122]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[123]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[124]  Daoben Zhu,et al.  Multi‐Functional Integration of Organic Field‐Effect Transistors (OFETs): Advances and Perspectives , 2013, Advanced materials.

[125]  Qihuang Gong,et al.  Fast and Low‐Power All‐Optical Tunable Fano Resonance in Plasmonic Microstructures , 2013 .

[126]  Michael D. Dickey,et al.  Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels , 2013 .

[127]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[128]  Yong-Young Noh,et al.  Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors , 2013, Advanced materials.

[129]  S. Wereley,et al.  Soft Matter , 2014 .