Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers

[1]  G. Sofia Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward , 2020 .

[2]  J. Lindsay,et al.  Scale-Optimized Surface Roughness for Topographic Analysis , 2019, Geosciences.

[3]  P. Strobl,et al.  Geomorpho90m - Global high-resolution geomorphometry layers: empirical evaluation and accuracy assessment , 2019 .

[4]  Grahame Smith,et al.  The way forward , 2018, Reaching Net Zero.

[5]  Jan Wild,et al.  On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs , 2018, Ecological Modelling.

[6]  J. Lindsay,et al.  Hyper-scale analysis of surface roughness , 2018 .

[7]  Stefanie Winkelmann,et al.  Human mobility and innovation spreading in ancient times: a stochastic agent-based simulation approach , 2018, EPJ Data Science.

[8]  J. Lindsay,et al.  Evaluating metrics of local topographic position for multiscale geomorphometric analysis , 2018, Geomorphology.

[9]  Christian Hirt,et al.  Artefact detection in global digital elevation models (DEMs): The maximum slope approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs , 2018 .

[10]  Wei Luo,et al.  Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods , 2018, Landslides.

[11]  Walter Jetz,et al.  A suite of global, cross-scale topographic variables for environmental and biodiversity modeling , 2018, Scientific Data.

[12]  T. Vanwalleghem,et al.  Controls on soil carbon storage from topography and vegetation in a rocky, semi-arid landscapes , 2018 .

[13]  Małgorzata Raduła,et al.  Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values , 2018 .

[14]  Igor V. Florinsky,et al.  An illustrated introduction to general geomorphometry , 2017 .

[15]  S. Kanae,et al.  A high‐accuracy map of global terrain elevations , 2017 .

[16]  E. Pardo‐Igúzquiza,et al.  Spatiotemporal estimation of snow depth using point data from snow stakes, digital terrain models, and satellite data , 2017 .

[17]  John B. Lindsay,et al.  Whitebox GAT: A case study in geomorphometric analysis , 2016, Comput. Geosci..

[18]  W. Jetz,et al.  Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution , 2015, Scientific Data.

[19]  J. Lindsay,et al.  An integral image approach to performing multi-scale topographic position analysis , 2015 .

[20]  C. Bettigole,et al.  Mapping tree density at a global scale , 2015, Nature.

[21]  H. Kreft,et al.  Terminology and quantification of environmental heterogeneity in species‐richness research , 2015, Biological reviews of the Cambridge Philosophical Society.

[22]  Pieter Kempeneers,et al.  Open Source Geospatial Tools: Applications in Earth Observation , 2014 .

[23]  Wolfgang Wagner,et al.  Optimisation of global grids for high-resolution remote sensing data , 2014, Comput. Geosci..

[24]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[25]  Michael Lehning,et al.  Statistical modelling of the snow depth distribution in open alpine terrain , 2013 .

[26]  Amir AghaKouchak,et al.  A satellite-based global landslide model , 2013 .

[27]  T. Stepinski,et al.  Geomorphons — a pattern recognition approach to classification and mapping of landforms , 2013 .

[28]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[29]  Igor V. Florinsky,et al.  Digital Terrain Analysis in Soil Science and Geology , 2011 .

[30]  J. Fridley Downscaling Climate over Complex Terrain: High Finescale (<1000 m) Spatial Variation of Near-Ground Temperatures in a Montane Forested Landscape (Great Smoky Mountains)* , 2009 .

[31]  J. M. Sappington,et al.  Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert , 2007 .

[32]  Josef Kellndorfer,et al.  Quality assessment of SRTM C- and X-band interferometric data: Implications for the retrieval of vegetation canopy height , 2007 .

[33]  Giuseppe Amatulli,et al.  Assessing long‐term fire risk at local scale by means of decision tree technique , 2006 .

[34]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[35]  J. Lindsay,et al.  Sensitivity of digital landscapes to artifact depressions in remotely-sensed DEMs , 2005 .

[36]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[37]  Roger C. Bales,et al.  Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data , 2003 .

[38]  Chengcui Zhang,et al.  A progressive morphological filter for removing nonground measurements from airborne LIDAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[39]  Thomas H Meyer,et al.  Terrain Analysis: Principles and Applications , 2001 .

[40]  W. Keydel,et al.  Shuttle Radar Topography Mission , 2000 .

[41]  Richard J. Pike,et al.  Geomorphometry -diversity in quantitative surface analysis , 2000 .

[42]  Vito Ferro,et al.  Slope curvature influence on soil erosion and deposition processes , 2000 .

[43]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[44]  Mauro Fiorentino,et al.  Informational entropy of fractal river networks , 1996 .

[45]  E. Wiggers,et al.  A Technique for Assessing Land Surface Ruggedness , 1983 .

[46]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[47]  E. Underwood,et al.  Mapping the Value of National Forest Landscapes for Ecosystem Service Provision , 2018 .

[48]  Cici Alexander,et al.  Micro-topography driven vegetation patterns in open mosaic landscapes , 2016 .

[49]  P. Kempeneers,et al.  Teaching spatio - temporal analysis and efficient data processing in open source environment , 2014 .

[50]  Eric W. Constance,et al.  The 3D Elevation Program initiative: a call for action , 2014 .

[51]  Robert P. Guralnick,et al.  EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data , 2014 .

[52]  D. Gesch,et al.  Global multi-resolution terrain elevation data 2010 (GMTED2010) , 2011 .

[53]  D. J. Chadwick,et al.  Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity , 2006 .

[54]  M. Neteler,et al.  Open Source GIS: A Grass GIS Approach , 2004, The International Series in Engineering and Computer Science.

[55]  W. M. Brown,et al.  Multiscale Simulation of Land Use Impact on Soil Erosion and Deposition Patterns , 2002 .

[56]  M. Roggero Airborne laser scanning: clustering in raw data , 2001 .

[57]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .