The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

[1]  Joshua M. Korn,et al.  Studying clonal dynamics in response to cancer therapy using high-complexity barcoding , 2015, Nature Medicine.

[2]  B. Birnir,et al.  Etomidate, propofol and diazepam potentiate GABA-evoked GABAA currents in a cell line derived from human glioblastoma. , 2015, European journal of pharmacology.

[3]  Voichita D. Marinescu,et al.  Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells , 2014, PloS one.

[4]  Gary D Bader,et al.  Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity , 2015, Proceedings of the National Academy of Sciences.

[5]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[6]  S. Nelander,et al.  RETRACTED: Vulnerability of Glioblastoma Cells to Catastrophic Vacuolization and Death Induced by a Small Molecule , 2014, Cell.

[7]  M. J. van den Bent,et al.  Serum-free culture success of glial tumors is related to specific molecular profiles and expression of extracellular matrix-associated gene modules. , 2013, Neuro-oncology.

[8]  C. Brennan,et al.  Quantitative assessment of intragenic receptor tyrosine kinase deletions in primary glioblastomas: their prevalence and molecular correlates , 2013, Acta Neuropathologica.

[9]  S. Nelander,et al.  Comparative drug pair screening across multiple glioblastoma cell lines reveals novel drug-drug interactions. , 2013, Neuro-oncology.

[10]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[11]  Se Hoon Kim,et al.  Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. , 2013, Cancer cell.

[12]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[13]  C. Heldin,et al.  Snail depletes the tumorigenic potential of glioblastoma , 2013, Oncogene.

[14]  Anders Isaksson,et al.  Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue , 2013, Genome Biology.

[15]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[16]  H. Woo,et al.  Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. , 2013, Cell reports.

[17]  N. Maitland,et al.  Adenovirus Serotype 5 Vectors with Tat-PTD Modified Hexon and Serotype 35 Fiber Show Greatly Enhanced Transduction Capacity of Primary Cell Cultures , 2013, PloS one.

[18]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[19]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[20]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[21]  M. Weller,et al.  Isocitrate dehydrogenase mutations: A challenge to traditional views on the genesis and malignant progression of gliomas , 2011, Glia.

[22]  Helmut Kettenmann,et al.  The brain tumor microenvironment , 2011, Glia.

[23]  Amanda Capes-Davis,et al.  Check your cultures! A list of cross‐contaminated or misidentified cell lines , 2010, International journal of cancer.

[24]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[25]  R. McLendon,et al.  Integrin alpha 6 regulates glioblastoma stem cells. , 2010, Cell stem cell.

[26]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[27]  J. Pontén,et al.  Long term culture of normal and neoplastic human glia. , 2009, Acta pathologica et microbiologica Scandinavica.

[28]  J. Pontén,et al.  Determinants for the establishment of permanent tissue culture lines from human gliomas. , 2009, Acta pathologica et microbiologica Scandinavica. Section A, Pathology.

[29]  Mark Bernstein,et al.  Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. , 2009, Cell stem cell.

[30]  H. Fine,et al.  SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. , 2009, Cell stem cell.

[31]  S. Horvath,et al.  Neurosphere Formation Is an Independent Predictor of Clinical Outcome in Malignant Glioma , 2009, Stem cells.

[32]  Tatsuya Ozawa,et al.  PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. , 2009, Cell stem cell.

[33]  J. Fawcett,et al.  An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours , 2009, Journal of Neuroscience Methods.

[34]  Peter Canoll,et al.  Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. , 2008, Neurosurgery.

[35]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[36]  Alexander Brawanski,et al.  CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. , 2007, Cancer research.

[37]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[38]  M. Frotscher,et al.  Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology , 2006, Nature Methods.

[39]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[40]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[41]  Austin G Smith,et al.  Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell , 2005, PLoS biology.

[42]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[43]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[44]  Jens Nilsson,et al.  Approximate geodesic distances reveal biologically relevant structures in microarray data , 2004, Bioinform..

[45]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[47]  L. Pevny,et al.  SOX2 Functions to Maintain Neural Progenitor Identity , 2003, Neuron.

[48]  D. Steindler,et al.  Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. Steindler,et al.  Human cortical glial tumors contain neural stem‐like cells expressing astroglial and neuronal markers in vitro , 2002, Glia.

[50]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[51]  D. Botstein,et al.  A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.

[52]  U. Lendahl,et al.  Expression of the class VI intermediate filament nestin in human central nervous system tumors. , 1992, Cancer research.

[53]  R. McKay,et al.  CNS stem cells express a new class of intermediate filament protein , 1990, Cell.

[54]  C. Kruchko,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. , 2012, Neuro-oncology.

[55]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth after chemotherapy , 2012 .

[56]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[57]  P. Loehrer Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma , 2006 .

[58]  R. Bjerkvig,et al.  Expression of extracellular matrix components in a highly infiltrative in vivo glioma model , 2002, Acta Neuropathologica.