Benchmarking natural evolution strategies with adaptation sampling on the noiseless and noisy black-box optimization testbeds
暂无分享,去创建一个
[1] Isao Ono,et al. Proposal of distance-weighted exponential natural evolution strategies , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).
[2] Raymond Ros,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .
[3] Tom Schaul,et al. A Natural Evolution Strategy for Multi-objective Optimization , 2010, PPSN.
[4] Tom Schaul,et al. Exponential natural evolution strategies , 2010, GECCO '10.
[5] Tom Schaul,et al. Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[6] Tom Schaul,et al. Natural evolution strategies converge on sphere functions , 2012, GECCO '12.
[7] Anne Auger,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .
[8] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[9] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[10] Tom Schaul,et al. Stochastic search using the natural gradient , 2009, ICML '09.
[11] Tom Schaul,et al. Studies in Continuous Black-box Optimization , 2011 .
[12] Alex A. Freitas,et al. Evolutionary Computation , 2002 .