Stereo Matching Using Belief Propagation

In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the binary process by introducing two robust functions, we apply the belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the Markov network. Other low-level visual cues (e.g., image segmentation) can also be easily incorporated in our stereo model to obtain better stereo results. Experiments demonstrate that our methods are comparable to the state-of-the-art stereo algorithms for many test cases.

[1]  An Luo,et al.  An intensity-based cooperative bidirectional stereo matching with simultaneous detection of discontinuities and occlusions , 1995, International Journal of Computer Vision.

[2]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[3]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[4]  Carlo Tomasi,et al.  A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[6]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[7]  Alan L. Yuille,et al.  Occlusions and binocular stereo , 1992, International Journal of Computer Vision.

[8]  Richard Szeliski,et al.  Handling occlusions in dense multi-view stereo , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  Olga Veksler,et al.  Stereo matching by compact windows via minimum ratio cycle , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[10]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[13]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[15]  Davi Geiger,et al.  Occlusions, Discontinuities, and Epipolar Lines in Stereo , 1998, ECCV.

[16]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[17]  Michael J. Brooks,et al.  The variational approach to shape from shading , 1986, Comput. Vis. Graph. Image Process..

[18]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[19]  Richard Szeliski,et al.  Stereo Matching with Nonlinear Diffusion , 1998, International Journal of Computer Vision.

[20]  Hai Tao,et al.  A global matching framework for stereo computation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[21]  W. Freeman,et al.  Bethe free energy, Kikuchi approximations, and belief propagation algorithms , 2001 .

[22]  Olga Veksler,et al.  Stereo Correspondence with Compact Windows via Minimum Ratio Cycle , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Heiko Hirschmüller,et al.  Improvements in real-time correlation-based stereo vision , 2001, CVPR 2001.

[24]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[25]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[26]  Aaron F. Bobick,et al.  Large Occlusion Stereo , 1999, International Journal of Computer Vision.

[27]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[28]  Peter N. Belhumeur,et al.  A Bayesian approach to binocular steropsis , 1996, International Journal of Computer Vision.

[29]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[30]  William T. Freeman,et al.  Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[31]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[32]  R. T. Gray,et al.  Prediction Of Correlation Errors In Stereo-Pair Images , 1980 .

[33]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Thomas O. Binford,et al.  Depth from Edge and Intensity Based Stereo , 1981, IJCAI.

[35]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.