Algorithms for computing minimal equivalent subformulas

Knowledge representation and reasoning using propositional logic is an important component of AI systems. A propositional formula in Conjunctive Normal Form (CNF) may contain redundant clauses — clauses whose removal from the formula does not affect the set of its models. Identification of redundant clauses is important because redundancy often leads to unnecessary computation, wasted storage, and may obscure the structure of the problem. A formula obtained by the removal of all redundant clauses from a given CNF formula F is called a Minimal Equivalent Subformula (MES) of F. This paper proposes a number of efficient algorithms and optimization techniques for the computation of MESes. Previous work on MES computation proposes a simple algorithm based on iterative application of the definition of a redundant clause, similar to the well-known deletion-based approach for the computation of Minimal Unsatisfiable Subformulas (MUSes). This paper observes that, in fact, most of the existing algorithms for the computation of MUSes can be adapted to the computation of MESes. However, some of the optimization techniques that are crucial for the performance of the state-of-the-art MUS extractors cannot be applied in the context of MES computation, and thus the resulting algorithms are often not efficient in practice. To address the problem of efficient computation of MESes, the paper develops a new class of algorithms that are based on the iterative analysis of subsets of clauses, and a lightweight pruning technique based on the computation of backbones. The experimental results, obtained on representative problem instances, confirm the effectiveness of the proposed methods. The experimental results also reveal that many CNF instances obtained from the practical applications of SAT exhibit a large degree of redundancy.

[1]  Peter L. Hammer,et al.  Optimal Compression of Propositional Horn Knowledge Bases: Complexity and Approximation , 1993, Artif. Intell..

[2]  Lakhdar Sais,et al.  Efficient Combination of Decision Procedures for MUS Computation , 2009, FroCoS.

[3]  Mikolás Janota,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence On Computing Minimal Correction Subsets , 2022 .

[4]  Éric Grégoire,et al.  On Approaches to Explaining Infeasibility of Sets of Boolean Clauses , 2008, 2008 20th IEEE International Conference on Tools with Artificial Intelligence.

[5]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[6]  Lakhdar Sais,et al.  Eliminating Redundant Clauses in SAT Instances , 2007, CPAIOR.

[7]  Enrico Pontelli,et al.  On the Use of Prime Implicates in Conformant Planning , 2010, AAAI.

[8]  Mikolás Janota Do SAT Solvers Make Good Configurators? , 2008, SPLC.

[9]  Joao Marques-Silva,et al.  Accelerating MUS extraction with recursive model rotation , 2011, 2011 Formal Methods in Computer-Aided Design (FMCAD).

[10]  Olivier Roussel,et al.  Redundancy in Random SAT Formulas , 2000, AAAI/IAAI.

[11]  Armin Biere,et al.  Failed Literal Detection for QBF , 2011, SAT.

[12]  Paolo Liberatore,et al.  Redundancy in logic II: 2CNF and Horn propositional formulae , 2005, Artif. Intell..

[13]  Hans Kleine Büning,et al.  Theory of Quantified Boolean Formulas , 2021, Handbook of Satisfiability.

[14]  Malgorzata Marek-Sadowska,et al.  Theory of wire addition and removal in combinational Boolean networks , 2007 .

[15]  Sharad Malik,et al.  Validating SAT solvers using an independent resolution-based checker: practical implementations and other applications , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[16]  Paolo Liberatore,et al.  Redundancy in logic III: Non-monotonic reasoning , 2005, Artif. Intell..

[17]  Lakhdar Sais,et al.  Redundancy in CSPs , 2008, ECAI.

[18]  N. J.L.deSiqueira,et al.  Explanation-Based Generalisation of Failures , 1988, ECAI.

[19]  Cédric Piette Let the Solver Deal with Redundancy , 2008, 2008 20th IEEE International Conference on Tools with Artificial Intelligence.

[20]  Éric Grégoire,et al.  MUST: Provide a Finer-Grained Explanation of Unsatisfiability , 2007, CP.

[21]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[22]  Béla Bollobás,et al.  The scaling window of the 2‐SAT transition , 1999, Random Struct. Algorithms.

[23]  Enrico Pontelli,et al.  Conjunctive Representations in Contingent Planning: Prime Implicates Versus Minimal CNF Formula , 2011, AAAI.

[24]  Yung-Chih Chen,et al.  Logic Restructuring Using Node Addition and Removal , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[25]  Olivier Coudert,et al.  Two-level logic minimization: an overview , 1994, Integr..

[26]  Armin Biere,et al.  Blocked Clause Elimination for QBF , 2011, CADE.

[27]  Mikolás Janota,et al.  On Computing Minimal Equivalent Subformulas , 2012, CP.

[28]  John W. Chinneck,et al.  Locating Minimal Infeasible Constraint Sets in Linear Programs , 1991, INFORMS J. Comput..

[29]  Marc Gyssens,et al.  Logical and algorithmic properties of stable conditional independence , 2010, Int. J. Approx. Reason..

[30]  E. McCluskey Minimization of Boolean functions , 1956 .

[31]  Jens Wissmann,et al.  Elimination of Redundancy in Ontologies , 2011, ESWC.

[32]  Nachum Dershowitz,et al.  A Scalable Algorithm for Minimal Unsatisfiable Core Extraction , 2006, SAT.

[33]  Lakhdar Sais,et al.  Extracting MUCs from Constraint Networks , 2006, ECAI.

[34]  Johannes Klaus Fichte,et al.  Clause-Learning Algorithms with Many Restarts and Bounded-Width Resolution , 2011, J. Artif. Intell. Res..

[35]  Tiziano Villa,et al.  Complexity of two-level logic minimization , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[36]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[37]  Niklas Sörensson,et al.  Temporal induction by incremental SAT solving , 2003, BMC@CAV.

[38]  Michael Codish,et al.  Backbones for Equality , 2013, Haifa Verification Conference.

[39]  Fabio Somenzi,et al.  Logic synthesis and verification algorithms , 1996 .

[40]  Alexander Nadel Boosting minimal unsatisfiable core extraction , 2010, Formal Methods in Computer Aided Design.

[41]  Inês Lynce,et al.  On Improving MUS Extraction Algorithms , 2011, SAT.

[42]  P. M. Wognum,et al.  Diagnosing and Solving Over-Determined Constraint Satisfaction Problems , 1993, IJCAI.

[43]  Giorgio Ausiello,et al.  Minimal Representation of Directed Hypergraphs , 1986, SIAM J. Comput..

[44]  Ulrich Junker,et al.  QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems , 2004, AAAI.

[45]  Paolo Liberatore,et al.  Redundancy in logic I: CNF propositional formulae , 2002, Artif. Intell..

[46]  Oliver Kullmann,et al.  Constraint Satisfaction Problems in Clausal Form II: Minimal Unsatisfiability and Conflict Structure , 2011, Fundam. Informaticae.

[47]  Pedro Meseguer,et al.  Boosting MUS Extraction , 2007, SARA.

[48]  Siert Wieringa,et al.  Understanding, Improving and Parallelizing MUS Finding Using Model Rotation , 2012, CP.

[49]  Peter J. Stuckey,et al.  Removing propagation redundant constraints in redundant modeling , 2007, TOCL.

[50]  Alain Hertz,et al.  Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems , 2009, J. Comb. Optim..

[51]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[52]  Inês Lynce,et al.  Towards efficient MUS extraction , 2012, AI Commun..

[53]  Willard Van Orman Quine,et al.  A Way to Simplify Truth Functions , 1955 .

[54]  Mikolás Janota,et al.  Minimal Sets over Monotone Predicates in Boolean Formulae , 2013, CAV.

[55]  Toby Walsh,et al.  Backbones and Backdoors in Satisfiability , 2005, AAAI.

[56]  Christoph Scholl,et al.  Computing Optimized Representations for Non-convex Polyhedra by Detection and Removal of Redundant Linear Constraints , 2009, TACAS.

[57]  Eugene Goldberg,et al.  Verification of proofs of unsatisfiability for CNF formulas , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[58]  Joao Marques-Silva,et al.  Minimal Unsatisfiability: Models, Algorithms and Applications (Invited Paper) , 2010, 2010 40th IEEE International Symposium on Multiple-Valued Logic.

[59]  Armin Biere,et al.  Inprocessing Rules , 2012, IJCAR.

[60]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[61]  David Buchfuhrer,et al.  The complexity of Boolean formula minimization , 2008, J. Comput. Syst. Sci..

[62]  Mikolás Janota,et al.  Algorithms for computing backbones of propositional formulae , 2015, AI Commun..

[63]  Adnan Darwiche,et al.  On the power of clause-learning SAT solvers as resolution engines , 2011, Artif. Intell..

[64]  Armin Biere,et al.  PicoSAT Essentials , 2008, J. Satisf. Boolean Model. Comput..

[65]  Willard Van Orman Quine,et al.  The Problem of Simplifying Truth Functions , 1952 .

[66]  Rina Dechter,et al.  Removing Redundancies in Constraint Networks , 1987, AAAI.

[67]  Hans van Maaren,et al.  Finding Guaranteed MUSes Fast , 2008, SAT.