Differential Evolution versus Genetic Algorithms in Multiobjective Optimization

This paper presents a comprehensive comparison between the performance of state-of-the-art genetic algorithms NSGA-II, SPEA2 and IBEA and their differential evolution based variants DEMONS-II, DEMOSP2 and DEMOIB. Experimental results on 16 numerical multi-objective test problems show that on the majority of problems, the algorithms based on differential evolution perform significantly better than the corresponding genetic algorithms with regard to applied quality indicators. This suggests that in numerical multiobjective optimization, differential evolution explores the decision space more efficiently than genetic algorithms.

[1]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[2]  Xinghuo Yu,et al.  AI 2004: Advances in Artificial Intelligence, 17th Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December 4-6, 2004, Proceedings , 2004, Australian Conference on Artificial Intelligence.

[3]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[4]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[5]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[6]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .

[7]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[8]  Jouni Lampinen,et al.  An Extension of Generalized Differential Evolution for Multi-objective Optimization with Constraints , 2004, PPSN.

[9]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[10]  Luis V. Santana-Quintero,et al.  1 AN ALGORITHM BASED ON DIFFERENTIAL EVOLUTION FOR MULTIOBJECTIVE PROBLEMS , 2005 .

[11]  Jouni Lampinen,et al.  DE’s Selection Rule for Multiobjective Optimization , 2001 .

[12]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[13]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[14]  Arthur C. Sanderson,et al.  Pareto-based multi-objective differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[15]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[16]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[17]  Xiaodong Li,et al.  Incorporating directional information within a differential evolution algorithm for multi-objective optimization , 2006, GECCO.

[18]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[19]  K. Multiobjective Optimization Using a Pareto Differential Evolution Approach , 2022 .

[20]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[21]  Carlos A. Coello Coello,et al.  A new proposal for multi-objective optimization using differential evolution and rough sets theory , 2006, GECCO '06.

[22]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[23]  L. Jain,et al.  Evolutionary multiobjective optimization : theoretical advances and applications , 2005 .

[24]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[25]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .