targets for ocean acidifi cation perturbation experiments

Research on ocean acidifi cation has a primary goal of advancing our understanding of the consequences for marine organisms and ecosystems of future changes in ocean chemistry caused by the anthropogenic rise in atmospheric carbon dioxide levels. Though interesting as a basic research theme, ocean acidifi cation science should play a key role in the development of national and international policies for reducing CO 2 emissions. To communicate the science of ocean acidifi cation effectively to industrial leaders, the public and policy makers, the science community must present the results and research implications in clear and consistent terms that relate directly, if possible, to terms used currently in climate discussions, such as atmospheric CO 2 levels and potential stabilisation targets. To this end, ocean acidifi cation research programmes should be considered, designed, and reported in the context of realistic ranges for atmospheric p(CO 2 ) levels.

[1]  Jean-Pierre Gattuso,et al.  Technical Note: Approaches and software tools to investigate the impact of ocean acidification , 2009 .

[2]  J. Butler,et al.  A new look at atmospheric carbon dioxide , 2009 .

[3]  E. Maier‐Reimer,et al.  Early detection of ocean acidification effects on marine calcification , 2009 .

[4]  Andrew J. Watson,et al.  Climatological Mean and Decadal Change in Surface Ocean Pco(2), and Net Sea-Air Co2 Flux Over the Global Oceans (Vol 56, Pg 554, 2009) , 2009 .

[5]  Richard J. Matear,et al.  Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2 , 2008, Proceedings of the National Academy of Sciences.

[6]  J. Forester,et al.  Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset , 2008, Proceedings of the National Academy of Sciences.

[7]  P. Glynn,et al.  Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world , 2008, Proceedings of the National Academy of Sciences.

[8]  R. Feely,et al.  Evidence for Upwelling of Corrosive "Acidified" Water onto the Continental Shelf , 2008, Science.

[9]  V. Masson‐Delmotte,et al.  Target atmospheric CO2: Where should humanity aim? , 2008, 0804.1126.

[10]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[11]  A. Wegener Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view , 2008 .

[12]  R. Steneck,et al.  Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.

[13]  I. Skjelvan,et al.  Carbon and nutrient mixed layer dynamics in the Norwegian Sea , 2007 .

[14]  J. Gattuso,et al.  Community primary production and calcification in a NW Mediterranean ecosystem dominated by calcareous macroalgae , 2007 .

[15]  Sydney Levitus,et al.  World ocean atlas 2005. Vol. 2, Salinity , 2006 .

[16]  Timothy P. Boyer,et al.  World Ocean Atlas 2005 Volume 1: Temperature [+DVD] , 2006 .

[17]  Sydney Levitus,et al.  World ocean atlas 2005. Vol. 4, Nutrients (phosphate, nitrate, silicate) , 2006 .

[18]  Denis Allemand,et al.  Impacts of ocean acidification on coral reefs and other marine calcifiers : a guide for future research , 2006 .

[19]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[20]  Ken Caldeira,et al.  Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean , 2005 .

[21]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[22]  R. Zeebe,et al.  History of carbonate ion concentration over the last 100 million years , 2004 .

[23]  H. Pörtner,et al.  Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History , 2004 .

[24]  Y. Shirayama,et al.  Effects of increased atmospheric CO2 on sea urchin early development , 2004 .

[25]  J. Kita,et al.  Acute CO2 tolerance during the early developmental stages of four marine teleosts , 2003, Environmental toxicology.

[26]  R. W. Buddemeier,et al.  Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin , 2003, Coral Reefs.

[27]  F. Chavez,et al.  Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño–La Niña event , 2002 .

[28]  P. B. Duffy,et al.  Anthropogenic carbon and ocean pH , 2001 .

[29]  Gian-Kasper Plattner,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming , 2001 .

[30]  E. Buitenhuis,et al.  University of Groningen Photosynthesis and Calcification by Emiliania huxleyi (Prymnesiophyceae) as a Function of Inorganic Carbon Species Buitenhuis, , 1999 .

[31]  J. Jouzel,et al.  Vostok ice core deuterium data for 420,000 years , 1999 .

[32]  Denis Allemand,et al.  Photosynthesis and Calcification at Cellular, Organismal and Community Levels in Coral Reefs: A Review on Interactions and Control by Carbonate Chemistry , 1999 .

[33]  C. D. Keeling,et al.  Atmospheric CO 2 records from sites in the SIO air sampling network , 1994 .

[34]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[35]  R. Berner Atmospheric Carbon Dioxide Levels Over Phanerozoic Time , 1990, Science.

[36]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[37]  Ulf Riebesell,et al.  Reduced calci ® cation of marine plankton in response to increased atmospheric CO 2 , 2022 .