Distinct Roles of Synaptic Transmission in Direct and Indirect Striatal Pathways to Reward and Aversive Behavior

[1]  I. Kanazawa,et al.  The distribution of substance P immunoreactive fibers in the rat central nervous system , 1978, The Journal of comparative neurology.

[2]  C. Pycock Turning behaviour in animals , 1980, Neuroscience.

[3]  V. Pickel,et al.  The distribution and functions of the enkephalins. , 1980, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[4]  G. Di Chiara,et al.  Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[6]  E. Richfield,et al.  Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system , 1989, Neuroscience.

[7]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[8]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[9]  P. Kalivas,et al.  Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity , 1991, Brain Research Reviews.

[10]  F. Benfenati,et al.  Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin , 1992, Nature.

[11]  W. Schultz,et al.  Importance of unpredictability for reward responses in primate dopamine neurons. , 1994, Journal of neurophysiology.

[12]  G. Uhl,et al.  Retained cocaine conditioned place preference in D1 receptor deficient mice. , 1995, Neuroreport.

[13]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[14]  M. Chesselet,et al.  Basal ganglia and movement disorders: an update , 1996, Trends in Neurosciences.

[15]  Differential effects of intra-accumbens sulpiride on cocaine-induced locomotion and conditioned place preference. , 1996, The Journal of pharmacology and experimental therapeutics.

[16]  P. Holland,et al.  The Role of an Amygdalo-Nigrostriatal Pathway in Associative Learning , 1997, The Journal of Neuroscience.

[17]  R. A. Fuchs,et al.  Effects of intraaccumbens administration of SCH‐23390 on cocaine‐induced locomotion and conditioned place preference , 1998, Synapse.

[18]  Dopaminergic regulation of immediate early gene expression in the basal ganglia. , 1998, Advances in pharmacology.

[19]  S. Nakanishi,et al.  Metabotropic Glutamate Receptor Subtype 7 Ablation Causes Deficit in Fear Response and Conditioned Taste Aversion , 1999, The Journal of Neuroscience.

[20]  C. Vorhees,et al.  Behavioral responses to cocaine and amphetamine administration in mice lacking the dopamine D1 receptor , 2000, Brain Research.

[21]  T Nagatsu,et al.  Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. , 2000, Science.

[22]  Bruce T. Hope,et al.  Neuroadaptation: Incubation of cocaine craving after withdrawal , 2001, Nature.

[23]  D. Watanabe,et al.  Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L. A. Fetsko,et al.  Dopamine D2L receptor knockout mice display deficits in positive and negative reinforcing properties of morphine and in avoidance learning , 2002, Neuroscience.

[25]  I. Pastan,et al.  Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Wickens,et al.  Neural mechanisms of reward-related motor learning , 2003, Current Opinion in Neurobiology.

[27]  Dai Watanabe,et al.  Reversible Suppression of Glutamatergic Neurotransmission of Cerebellar Granule Cells In Vivo by Genetically Manipulated Expression of Tetanus Neurotoxin Light Chain , 2003, The Journal of Neuroscience.

[28]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[29]  H. Maeno Dopamine receptors in canine caudate nucleus , 1982, Molecular and Cellular Biochemistry.

[30]  A. Grace,et al.  Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior , 2005, Nature Neuroscience.

[31]  A. Grace,et al.  Dopamine-Dependent Interactions between Limbic and Prefrontal Cortical Plasticity in the Nucleus Accumbens: Disruption by Cocaine Sensitization , 2005, Neuron.

[32]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[33]  S. Hyman,et al.  Neural mechanisms of addiction: the role of reward-related learning and memory. , 2006, Annual review of neuroscience.

[34]  P. Redgrave,et al.  Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat , 2006, Neuroscience.

[35]  Mary Kay Lobo,et al.  FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains , 2006, Nature Neuroscience.

[36]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[37]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[38]  H. Meziane,et al.  Absence of dopamine D2 receptors unmasks an inhibitory control over the brain circuitries activated by cocaine , 2007, Proceedings of the National Academy of Sciences.

[39]  S. Charpier,et al.  The pars reticulata of the substantia nigra: a window to basal ganglia output. , 2007, Progress in brain research.

[40]  W. Schultz Behavioral dopamine signals , 2007, Trends in Neurosciences.

[41]  S. Tonegawa,et al.  Lack of Self-Administration of Cocaine in Dopamine D1 Receptor Knock-Out Mice , 2007, The Journal of Neuroscience.

[42]  O. Hikosaka Basal Ganglia Mechanisms of Reward‐Oriented Eye Movement , 2007, Annals of the New York Academy of Sciences.

[43]  T. Tzschentke REVIEW ON CPP: Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade , 2007, Addiction biology.

[44]  Michael J. Frank,et al.  Hold Your Horses: Impulsivity, Deep Brain Stimulation, and Medication in Parkinsonism , 2007, Science.

[45]  A. Grace,et al.  Regulation of firing of dopaminergic neurons and control of goal-directed behaviors , 2007, Trends in Neurosciences.

[46]  David J. Anderson,et al.  Reversible Silencing of Neuronal Excitability in Behaving Mice by a Genetically Targeted, Ivermectin-Gated Cl− Channel , 2007, Neuron.

[47]  Yasushi Kishimoto,et al.  Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission , 2007, Proceedings of the National Academy of Sciences.

[48]  P. Greengard,et al.  Cocaine Regulates MEF2 to Control Synaptic and Behavioral Plasticity , 2008, Neuron.

[49]  S. Ikemoto,et al.  Dual Role of Medial A10 Dopamine Neurons in Affective Encoding , 2008, Neuropsychopharmacology.

[50]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[51]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[52]  M. Ungless,et al.  Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli , 2009, Proceedings of the National Academy of Sciences.

[53]  G. Fisone,et al.  Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice , 2009, Trends in Neurosciences.

[54]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.