Nanoscale Memristive Devices For Memory And Logic Applications

[1]  B. Ricco,et al.  Novel Mechanism for Tunneling and Breakdown of Thin SiO 2 Films , 1983 .

[2]  T. Sakamoto,et al.  A nonvolatile programmable solid-electrolyte nanometer switch , 2004, IEEE Journal of Solid-State Circuits.

[3]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[4]  Jordi Suñé,et al.  Nondestructive multiple breakdown events in very thin SiO2 films , 1989 .

[5]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[6]  Helmut Mehrer,et al.  Solubility, diffusion and thermodynamic properties of silver in silicon , 1987 .

[7]  Satyen K. Deb,et al.  Comparison of electrochromic amorphous and crystalline tungsten oxide films , 2003 .

[8]  T. Karakasidis,et al.  Grain-boundary diffusion of cation vacancies in nickel oxide:mA molecular-dynamics study , 1997 .

[9]  Roger Y Tsien,et al.  A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Schierbaum,et al.  The structure and electrical conductivity of vacuum-annealed WO3 thin films , 2004 .

[11]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[12]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[13]  J. Campbell Scott,et al.  Is There an Immortal Memory? , 2004, Science.

[14]  O. Kim,et al.  Unipolar resistive switching characteristic of semiconducting poly(o-anthranilic acid) film , 2008 .

[15]  B. Johnson,et al.  Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology , 2004 .

[16]  Jordi Suñé,et al.  Exploratory observations of post‐breakdown conduction in polycrystalline‐silicon and metal‐gated thin‐oxide metal‐oxide‐semiconductor capacitors , 1993 .

[17]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[18]  D. Wolansky,et al.  Thermal oxidation of chemical vapour deposited tungsten layers on silicon substrates for embedded non-volatile memory application , 2009 .

[19]  A. J. Snell,et al.  Switching in amorphous devices , 1992 .

[20]  W. Lu,et al.  Programmable Resistance Switching in Nanoscale Two-terminal Devices , 2008 .

[21]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[22]  M. J. van Duuren,et al.  Vertical poly-Si select pn-diodes for emerging resistive non-volatile memories , 2007 .

[23]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[24]  Yang Yang,et al.  High-Performance Emerging Solid-State Memory Technologies , 2004 .

[25]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[26]  R. A. Doney,et al.  4. Probability and Random Processes , 1993 .

[27]  S. O. Park,et al.  Electrical observations of filamentary conductions for the resistive memory switching in NiO films , 2006 .

[28]  R. Crandall,et al.  Switching and filament formation in hot-wire CVD p-type a-Si:H devices , 2003 .

[29]  Tiziana Polichetti,et al.  Transport mechanism and IR structural characterisation of evaporated amorphous WO3 films , 2003 .

[30]  S. Rhee,et al.  Resistance Switching Behaviors of Hafnium Oxide Films Grown by MOCVD for Nonvolatile Memory Applications , 2008 .

[31]  A. Owen,et al.  Memory switching in amorphous silicon devices , 1983 .

[32]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[33]  J. Linden,et al.  Plasma-enhanced CVD of electrochromic materials , 1995 .

[34]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[35]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[36]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[37]  Siddharth Gaba,et al.  Nanoscale resistive memory with intrinsic diode characteristics and long endurance , 2010 .

[38]  Zhaoning Yu,et al.  Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. , 2006, Nano letters.

[39]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[40]  S. Haddad,et al.  Non-volatile resistive switching for advanced memory applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[41]  T. M. Klapwijk,et al.  Scaling of nano-Schottky-diodes , 2002 .

[42]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[43]  P.B. Griffin,et al.  Impact ionization MOS (I-MOS)-Part I: device and circuit simulations , 2005, IEEE Transactions on Electron Devices.

[44]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[45]  M. Kund,et al.  Organic materials for high-density non-volatile memory applications , 2003, IEEE International Electron Devices Meeting 2003.

[46]  L. Lozzi,et al.  The influence of air and vacuum thermal treatments on the NO2 gas sensitivity of WO3 thin films prepared by thermal evaporation , 2001 .

[47]  M. Mitkova,et al.  Nonvolatile memory based on solid electrolytes , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference.

[48]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[49]  B. Riccò,et al.  High-field-induced degradation in ultra-thin SiO/sub 2/ films , 1988 .

[50]  D. Carlson,et al.  Surface states and barrier heights of metal-amorphous silicon schottky barriers , 1977 .

[51]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[52]  Young-soo Park,et al.  Low‐Temperature‐Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High‐Density Non‐volatile Memory , 2009 .

[53]  D. Strukov,et al.  Prospects for terabit-scale nanoelectronic memories , 2004 .

[54]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[55]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[56]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[57]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[58]  M. Bear,et al.  This paper was presented at a colloquium entitled ‘ ‘ Memory : Recording Experience in Cells and Circuits , ’ ’ organized by , 1996 .

[59]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[60]  E. Lai,et al.  A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability , 2007, 2007 IEEE Symposium on VLSI Technology.

[61]  W. Boer Threshold switching in hydrogenated amorphous silicon , 1982 .

[62]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[63]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[64]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[65]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[66]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[67]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[68]  P. Leiderer,et al.  Photoinduced doping of thin amorphous WO3 films , 1994 .

[69]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[70]  M. Di Ventra,et al.  Current-voltage characteristics of semiconductor/ferromagnet junctions in the spin-blockade regime , 2008 .

[71]  Y. Pershin,et al.  Spin Memristive Systems: Spin Memory Effects in Semiconductor Spintronics , 2008, 0806.2151.

[72]  Woo Young Choi,et al.  70-nm impact-ionization metal-oxide-semiconductor (I-MOS) devices integrated with tunneling field-effect transistors (TFETs) , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[73]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[74]  K. Cheung Ultrathin gate-oxide breakdown-reversibility at low voltage , 2006, IEEE Transactions on Device and Materials Reliability.

[75]  Giacomo Indiveri,et al.  A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity , 2006, IEEE Transactions on Neural Networks.

[76]  E. Wertheim,et al.  What is in a word? , 1972, The British journal of medical psychology.

[77]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[78]  Sangsul Lee,et al.  Resistance Switching Characteristics for Nonvolatile Memory Operation of Binary Metal Oxides , 2007 .

[79]  Huey-Chiang Liou,et al.  Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films , 1998 .

[80]  C. Ozkan,et al.  Digital memory device based on tobacco mosaic virus conjugated with nanoparticles , 2006, Nature nanotechnology.

[82]  Manuel F. M. Costa,et al.  Structural and optical characterization of WO3 deposited on glass and ITO , 2002 .

[83]  John Martin Shannon,et al.  Tunneling effective mass in hydrogenated amorphous silicon , 1993 .

[84]  A. J. Snell,et al.  The switching mechanism in amorphous silicon junctions , 1985 .

[85]  Impact ionization FETs based on silicon nanowires , 2007, 2007 65th Annual Device Research Conference.

[86]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[87]  L. Chua Memristor-The missing circuit element , 1971 .

[88]  Albert Y. Zomaya Handbook of Nature-Inspired and Innovative Computing - Integrating Classical Models with Emerging Technologies , 2006 .

[89]  Jason D. Monnell,et al.  Conductance Switching in Single Molecules Through Conformational Changes , 2001, Science.

[90]  C. Gopalan,et al.  Erase mechanism for copper oxide resistive switching memory cells with nickel electrode , 2006, 2006 International Electron Devices Meeting.

[91]  Seth Copen Goldstein,et al.  Molecular electronics: from devices and interconnect to circuits and architecture , 2003, Proc. IEEE.

[92]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[93]  Dharmendra S. Modha,et al.  The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[94]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[95]  Chih-Yi Liu,et al.  Bistable resistive switching of a sputter-deposited Cr-doped SrZrO/sub 3/ memory film , 2005, IEEE Electron Device Letters.

[96]  Konstantin K. Likharev,et al.  Electronics Below 10 nm , 2003 .

[97]  H. Hwang,et al.  Resistance switching of copper doped MoOx films for nonvolatile memory applications , 2007 .

[98]  K. Miyake,et al.  Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere , 1984 .

[99]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[100]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[101]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[102]  Dingsan Gao,et al.  WO3 thin film sensor prepared by sol-gel technique and its low-temperature sensing properties to trimethylamine , 2001 .

[103]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[104]  Thomas S. Huang,et al.  Image processing , 1971 .

[105]  B. Griffith,et al.  Proof of concept: hemodynamic response to long-term partial ventricular support with the synergy pocket micro-pump. , 2009, Journal of the American College of Cardiology.

[106]  C. Bittencourt,et al.  The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films , 2002 .

[107]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[108]  André DeHon,et al.  Array-Based Architecture for FET-Based, , 2003 .

[109]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[110]  R. Asomoza,et al.  Switching in coplanar amorphous hydrogenated silicon devices , 2000 .

[111]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[112]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[113]  D. Debanne,et al.  Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Jordi Suñé,et al.  On the breakdown statistics of very thin SiO2 films , 1990 .

[115]  Anatoli Korkin,et al.  Nano and Giga Challenges in Microelectronics , 2003 .

[116]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[117]  Qibing Pei,et al.  Stackable Resistive Memory Device Using Photo Cross-linkable Copolymer , 2007, 2007 IEEE International Electron Devices Meeting.

[118]  M. Sapoff,et al.  Theory and application of self-heated thermistors , 1963 .

[119]  Qi Liu,et al.  Multilevel resistive switching with ionic and metallic filaments , 2009 .

[120]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[121]  H. Gundersen,et al.  Total regional and global number of synapses in the human brain neocortex , 2001, Synapse.

[122]  C. Mead,et al.  Neuromorphic analogue VLSI. , 1995, Annual review of neuroscience.

[123]  Ja’far,et al.  Switching in amorphous-silicon devices. , 1994, Physical review. B, Condensed matter.