Semilocal convergence of Chebyshev-like root-finding method for simultaneous approximation of polynomial zeros
暂无分享,去创建一个
[1] Miodrag S. Petković,et al. Point Estimation of Root Finding Methods , 2008 .
[2] Nikolay Kyurkchiev,et al. Initial Approximations and Root Finding Methods , 1998 .
[3] Petko D. Proinov. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..
[4] Victor Y. Pan,et al. Numerical methods for roots of polynomials , 2007 .
[5] Petko D. Proinov. General local convergence theory for a class of iterative processes and its applications to Newton's method , 2009, J. Complex..
[6] Petko D. Proinov. A new semilocal convergence theorem for the Weierstrass method from data at one point , 2006 .
[7] Petko D. Proinov,et al. A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously , 2014, J. Complex..
[8] Karl Weierstrass,et al. Mathematische Werke: Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen , 2013 .
[9] B. Sendov,et al. Numerical solution of polynomial equations , 1994 .
[10] Miodrag S. Petkovic,et al. On the new fourth-order methods for the simultaneous approximation of polynomial zeros , 2011, J. Comput. Appl. Math..
[11] Petko D. Proinov. Semilocal convergence of two iterative methods for simultaneous computation of polynomial zeros , 2007, 0709.1068.
[12] Petko D. Proinov. A unified theory of cone metric spaces and its applications to the fixed point theory , 2011, 1111.4920.