Semilocal convergence of Chebyshev-like root-finding method for simultaneous approximation of polynomial zeros

Abstract In this paper, we present convergence results for the Chebyshev-like method for the simultaneous computation of all zeros of a polynomial f over a complete normed field. Our results generalize, improve and complement the result of Petkovic and Petkovic (2001) [10]. The new results give weaker sufficient convergence conditions, a priori and a posteriori error estimates as well as information on the location of the zeros. Another important aspect of this work is that we do not assume neither simplicity nor existence of the zeros of f . Furthermore, several numerical examples are provided to show some practical applications of our results.

[1]  Miodrag S. Petković,et al.  Point Estimation of Root Finding Methods , 2008 .

[2]  Nikolay Kyurkchiev,et al.  Initial Approximations and Root Finding Methods , 1998 .

[3]  Petko D. Proinov New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..

[4]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .

[5]  Petko D. Proinov General local convergence theory for a class of iterative processes and its applications to Newton's method , 2009, J. Complex..

[6]  Petko D. Proinov A new semilocal convergence theorem for the Weierstrass method from data at one point , 2006 .

[7]  Petko D. Proinov,et al.  A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously , 2014, J. Complex..

[8]  Karl Weierstrass,et al.  Mathematische Werke: Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen , 2013 .

[9]  B. Sendov,et al.  Numerical solution of polynomial equations , 1994 .

[10]  Miodrag S. Petkovic,et al.  On the new fourth-order methods for the simultaneous approximation of polynomial zeros , 2011, J. Comput. Appl. Math..

[11]  Petko D. Proinov Semilocal convergence of two iterative methods for simultaneous computation of polynomial zeros , 2007, 0709.1068.

[12]  Petko D. Proinov A unified theory of cone metric spaces and its applications to the fixed point theory , 2011, 1111.4920.