Embracing Change: Continual Learning in Deep Neural Networks

[1]  Albert Gordo,et al.  Using Hindsight to Anchor Past Knowledge in Continual Learning , 2019, AAAI.

[2]  Elad Hoffer,et al.  Task Agnostic Continual Learning Using Online Variational Bayes , 2018, 1803.10123.

[3]  Seyed Iman Mirzadeh,et al.  Understanding the Role of Training Regimes in Continual Learning , 2020, NeurIPS.

[4]  Hassan Ghasemzadeh,et al.  Dropout as an Implicit Gating Mechanism For Continual Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[5]  Min Lin,et al.  Online Fast Adaptation and Knowledge Accumulation: a New Approach to Continual Learning , 2020, ArXiv.

[6]  Joel Lehman,et al.  Learning to Continually Learn , 2020, ECAI.

[7]  S. Levine,et al.  Gradient Surgery for Multi-Task Learning , 2020, NeurIPS.

[8]  Richard E. Turner,et al.  Continual Learning with Adaptive Weights (CLAW) , 2019, ICLR.

[9]  Andrei A. Rusu,et al.  Meta-Learning with Warped Gradient Descent , 2019, ICLR.

[10]  Hugo Larochelle,et al.  Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples , 2019, ICLR.

[11]  Yee Whye Teh,et al.  Functional Regularisation for Continual Learning using Gaussian Processes , 2019, ICLR.

[12]  Fahad Shahbaz Khan,et al.  Random Path Selection for Continual Learning , 2019, NeurIPS.

[13]  Patrick H. Chen,et al.  Overcoming Catastrophic Forgetting by Generative Regularization , 2019, ArXiv.

[14]  S. Levine,et al.  Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning , 2019, CoRL.

[15]  Yee Whye Teh,et al.  Continual Unsupervised Representation Learning , 2019, NeurIPS.

[16]  Tinne Tuytelaars,et al.  Online Continual Learning with Maximally Interfered Retrieval , 2019, ArXiv.

[17]  Timothy E. J. Behrens,et al.  Human Replay Spontaneously Reorganizes Experience , 2019, Cell.

[18]  Yee Whye Teh,et al.  Task Agnostic Continual Learning via Meta Learning , 2019, ArXiv.

[19]  Sebastian Ruder,et al.  Episodic Memory in Lifelong Language Learning , 2019, NeurIPS.

[20]  Martha White,et al.  Meta-Learning Representations for Continual Learning , 2019, NeurIPS.

[21]  Ying Wei,et al.  Hierarchically Structured Meta-learning , 2019, ICML.

[22]  Subhransu Maji,et al.  Meta-Learning With Differentiable Convex Optimization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Yoshua Bengio,et al.  Gradient based sample selection for online continual learning , 2019, NeurIPS.

[24]  Sergey Levine,et al.  Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables , 2019, ICML.

[25]  Yee Whye Teh,et al.  Exploiting Hierarchy for Learning and Transfer in KL-regularized RL , 2019, ArXiv.

[26]  Kyunghyun Cho,et al.  Continual Learning via Neural Pruning , 2019, ArXiv.

[27]  Marc'Aurelio Ranzato,et al.  Continual Learning with Tiny Episodic Memories , 2019, ArXiv.

[28]  Sergey Levine,et al.  Online Meta-Learning , 2019, ICML.

[29]  Xin Wang,et al.  Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization , 2019, ICML.

[30]  Sergey Levine,et al.  Deep Online Learning via Meta-Learning: Continual Adaptation for Model-Based RL , 2018, ICLR.

[31]  Tinne Tuytelaars,et al.  Task-Free Continual Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  David Rolnick,et al.  Experience Replay for Continual Learning , 2018, NeurIPS.

[33]  Martha White,et al.  The Utility of Sparse Representations for Control in Reinforcement Learning , 2018, AAAI.

[34]  Katja Hofmann,et al.  Fast Context Adaptation via Meta-Learning , 2018, ICML.

[35]  Marc'Aurelio Ranzato,et al.  Efficient Lifelong Learning with A-GEM , 2018, ICLR.

[36]  Razvan Pascanu,et al.  Meta-Learning with Latent Embedding Optimization , 2018, ICLR.

[37]  Marcus Rohrbach,et al.  Selfless Sequential Learning , 2018, ICLR.

[38]  Razvan Pascanu,et al.  Adapting Auxiliary Losses Using Gradient Similarity , 2018, ArXiv.

[39]  Tom Eccles,et al.  Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies , 2018, NeurIPS.

[40]  Yee Whye Teh,et al.  Conditional Neural Processes , 2018, ICML.

[41]  Sergey Levine,et al.  Probabilistic Model-Agnostic Meta-Learning , 2018, NeurIPS.

[42]  Yarin Gal,et al.  Towards Robust Evaluations of Continual Learning , 2018, ArXiv.

[43]  Yee Whye Teh,et al.  Progress & Compress: A scalable framework for continual learning , 2018, ICML.

[44]  Zhanxing Zhu,et al.  Reinforced Continual Learning , 2018, NeurIPS.

[45]  Sergey Levine,et al.  Latent Space Policies for Hierarchical Reinforcement Learning , 2018, ICML.

[46]  Erich Elsen,et al.  Efficient Neural Audio Synthesis , 2018, ICML.

[47]  Murray Shanahan,et al.  Continual Reinforcement Learning with Complex Synapses , 2018, ICML.

[48]  Razvan Pascanu,et al.  Memory-based Parameter Adaptation , 2018, ICLR.

[49]  Alexandros Karatzoglou,et al.  Overcoming Catastrophic Forgetting with Hard Attention to the Task , 2018 .

[50]  Max Welling,et al.  Learning Sparse Neural Networks through L0 Regularization , 2017, ICLR.

[51]  Marcus Rohrbach,et al.  Memory Aware Synapses: Learning what (not) to forget , 2017, ECCV.

[52]  David Kappel,et al.  Deep Rewiring: Training very sparse deep networks , 2017, ICLR.

[53]  Richard E. Turner,et al.  Variational Continual Learning , 2017, ICLR.

[54]  Sung Ju Hwang,et al.  Lifelong Learning with Dynamically Expandable Networks , 2017, ICLR.

[55]  Peter Stone,et al.  Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science , 2017, Nature Communications.

[56]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[57]  Derek Hoiem,et al.  Learning without Forgetting , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[59]  Xu He,et al.  Overcoming Catastrophic Interference by Conceptors , 2017, ArXiv.

[60]  Yoshua Bengio,et al.  A Closer Look at Memorization in Deep Networks , 2017, ICML.

[61]  Marc'Aurelio Ranzato,et al.  Gradient Episodic Memory for Continual Learning , 2017, NIPS.

[62]  Jiwon Kim,et al.  Continual Learning with Deep Generative Replay , 2017, NIPS.

[63]  Alex Graves,et al.  Automated Curriculum Learning for Neural Networks , 2017, ICML.

[64]  Matthew B. Blaschko,et al.  Encoder Based Lifelong Learning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[65]  Andrew McCallum,et al.  Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples , 2017, NIPS.

[66]  Richard S. Zemel,et al.  Prototypical Networks for Few-shot Learning , 2017, NIPS.

[67]  Surya Ganguli,et al.  Continual Learning Through Synaptic Intelligence , 2017, ICML.

[68]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[69]  Razvan Pascanu,et al.  Discovering objects and their relations from entangled scene representations , 2017, ICLR.

[70]  Chrisantha Fernando,et al.  PathNet: Evolution Channels Gradient Descent in Super Neural Networks , 2017, ArXiv.

[71]  Dmitry P. Vetrov,et al.  Variational Dropout Sparsifies Deep Neural Networks , 2017, ICML.

[72]  Conrad D. James,et al.  Neurogenesis deep learning: Extending deep networks to accommodate new classes , 2016, 2017 International Joint Conference on Neural Networks (IJCNN).

[73]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[74]  Christoph H. Lampert,et al.  iCaRL: Incremental Classifier and Representation Learning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Zeb Kurth-Nelson,et al.  Learning to reinforcement learn , 2016, CogSci.

[76]  Hugo Larochelle,et al.  Optimization as a Model for Few-Shot Learning , 2016, ICLR.

[77]  C A Nelson,et al.  Learning to Learn , 2017, Encyclopedia of Machine Learning and Data Mining.

[78]  Sergio Gomez Colmenarejo,et al.  Hybrid computing using a neural network with dynamic external memory , 2016, Nature.

[79]  Razvan Pascanu,et al.  Progressive Neural Networks , 2016, ArXiv.

[80]  Marcin Andrychowicz,et al.  Learning to learn by gradient descent by gradient descent , 2016, NIPS.

[81]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[82]  Alexander V. Terekhov,et al.  Knowledge Transfer in Deep Block-Modular Neural Networks , 2015, Living Machines.

[83]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[84]  Shai Shalev-Shwartz,et al.  SelfieBoost: A Boosting Algorithm for Deep Learning , 2014, ArXiv.

[85]  Yoshua Bengio,et al.  An Empirical Investigation of Catastrophic Forgeting in Gradient-Based Neural Networks , 2013, ICLR.

[86]  Surya Ganguli,et al.  Exact solutions to the nonlinear dynamics of learning in deep linear neural networks , 2013, ICLR.

[87]  Bogdan Gabrys,et al.  Metalearning: a survey of trends and technologies , 2013, Artificial Intelligence Review.

[88]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[89]  D. Sherry,et al.  Seasonal hippocampal plasticity in food-storing birds , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[90]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[91]  Wulfram Gerstner,et al.  Tag-Trigger-Consolidation: A Model of Early and Late Long-Term-Potentiation and Depression , 2008, PLoS Comput. Biol..

[92]  J. Wixted The psychology and neuroscience of forgetting. , 2004, Annual review of psychology.

[93]  Mark B. Ring CHILD: A First Step Towards Continual Learning , 1997, Machine Learning.

[94]  Sepp Hochreiter,et al.  Learning to Learn Using Gradient Descent , 2001, ICANN.

[95]  Anthony V. Robins,et al.  Catastrophic Forgetting, Rehearsal and Pseudorehearsal , 1995, Connect. Sci..

[96]  E. Tulving,et al.  Episodic and semantic memory , 1972 .