On a Graph Approach to Modal Logics

We introduce a sound and complete graph calculus for multi-modal logics. This formalism internalizes the (Kripke) semantics of modal logics and provides uniform tools for expressing and manipulating modal formulas. We present the graph calculus for logic K and show how to extend it to handle some modalities, like the global and difference modalities, in a natural manner. We also indicate how it can be easily extended to other normal modal logics, such as T, S4, S5, etc.

[1]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[2]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[3]  Paulo A. S. Veloso,et al.  A Calculus for Graphs with Complement , 2010, Diagrams.

[4]  Dimiter Vakarelov,et al.  PDL with intersection of programs: a complete axiomatization , 2003, J. Appl. Non Class. Logics.

[5]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[6]  Paulo A. S. Veloso,et al.  Reasoning with Graphs , 2006, WoLLIC.

[7]  Paulo A. S. Veloso,et al.  On graph reasoning , 2009, Inf. Comput..

[8]  Gavin Lowe,et al.  Proofs with Graphs , 1996, Sci. Comput. Program..

[9]  Paulo A. S. Veloso,et al.  On Graph Refutation for Relational Inclusions , 2011, LSFA.