Assessing measurement model quality in PLS-SEM using confirmatory composite analysis

Abstract Confirmatory factor analysis (CFA) has historically been used to develop and improve reflectively measured constructs based on the domain sampling model. Compared to CFA, confirmatory composite analysis (CCA) is a recently proposed alternative approach applied to confirm measurement models when using partial least squares structural equation modeling (PLS-SEM). CCA is a series of steps executed with PLS-SEM to confirm both reflective and formative measurement models of established measures that are being updated or adapted to a different context. CCA is also useful for developing new measures. Finally, CCA offers several advantages over other approaches for confirming measurement models consisting of linear composites.

[1]  Marko Sarstedt,et al.  An assessment of the use of partial least squares structural equation modeling in marketing research , 2012 .

[2]  Marko Sarstedt,et al.  Testing measurement invariance of composites using partial least squares , 2016 .

[3]  M. Wood Bootstrapped Confidence Intervals as an Approach to Statistical Inference , 2005 .

[4]  Geoffrey S. Hubona,et al.  Using PLS path modeling in new technology research: updated guidelines , 2016, Ind. Manag. Data Syst..

[5]  Wynne W. Chin The partial least squares approach for structural equation modeling. , 1998 .

[6]  Joseph F. Hair,et al.  Essentials of Business Research Methods , 2003 .

[7]  Christophe Goetz,et al.  Item reduction based on rigorous methodological guidelines is necessary to maintain validity when shortening composite measurement scales. , 2013, Journal of clinical epidemiology.

[8]  Joseph F. Hair,et al.  Estimation issues with PLS and CBSEM: Where the bias lies! ☆ , 2016 .

[9]  Jörg Henseler,et al.  Consistent and asymptotically normal PLS estimators for linear structural equations , 2014 .

[10]  Pratyush Nidhi Sharma,et al.  Prediction-Oriented Model Selection in Partial Least Squares Path Modeling , 2018, Decis. Sci..

[11]  Joseph F. Hair,et al.  When to use and how to report the results of PLS-SEM , 2019, European Business Review.

[12]  H. Ting,et al.  Structural model robustness checks in PLS-SEM , 2020, Tourism Economics.

[13]  Galit Shmueli,et al.  Predictive model assessment in PLS-SEM: guidelines for using PLSpredict , 2019, European Journal of Marketing.

[14]  Martin Wetzels,et al.  Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models , 2012 .

[15]  Marko Sarstedt,et al.  Advanced Issues in Partial Least Squares Structural Equation Modeling , 2017 .

[16]  Marko Sarstedt,et al.  Applying the future time perspective scale to advertising research , 2014 .

[17]  Christian Nitzl,et al.  The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: Directions for future theory development , 2016 .

[18]  Jan-Bernd Lohmöller,et al.  Latent Variable Path Modeling with Partial Least Squares , 1989 .

[19]  Edward E. Rigdon,et al.  Factor Indeterminacy as Metrological Uncertainty: Implications for Advancing Psychological Measurement , 2019, Multivariate behavioral research.

[20]  R. Vandenberg,et al.  A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research , 2000 .

[21]  Wynne W. Chin,et al.  The case of partial least squares (PLS) path modeling in managerial accounting research , 2017 .

[22]  Stacie Petter,et al.  "Haters Gonna Hate": PLS and Information Systems Research , 2018, Data Base.

[23]  L. Crocker,et al.  Introduction to Classical and Modern Test Theory , 1986 .

[24]  Pratyush Nidhi Sharma,et al.  PLS-Based Model Selection: The Role of Alternative Explanations in Information Systems Research , 2019, J. Assoc. Inf. Syst..

[25]  D. Ketchen A Primer on Partial Least Squares Structural Equation Modeling , 2013 .

[26]  Joseph F. Hair,et al.  Partial Least Squares : The Better Approach to Structural Equation Modeling ? , 2012 .

[27]  Marko Sarstedt,et al.  PLS-SEM: Indeed a Silver Bullet , 2011 .

[28]  M. Kendall,et al.  An Introduction to the Theory of Statistics. , 1911 .

[29]  M. Appelbaum,et al.  Psychometric methods. , 1989, Annual review of psychology.

[30]  T. Brown,et al.  Confirmatory Factor Analysis for Applied Research , 2006 .

[31]  L. Cronbach,et al.  Construct validity in psychological tests. , 1955, Psychological bulletin.

[32]  Joseph F. Hair,et al.  On the Emancipation of PLS-SEM: A Commentary on Rigdon (2012) , 2014 .

[33]  G. Yule On the Theory of Correlation for any Number of Variables, Treated by a New System of Notation , 1907 .

[34]  Joseph F. Hair,et al.  PLS-SEM or CB-SEM: updated guidelines on which method to use , 2017 .

[35]  R. Kline Principles and practice of structural equation modeling, 4th ed. , 2016 .

[36]  Y Kano,et al.  On the Equivalence of Factors and Components. , 1990, Multivariate behavioral research.

[37]  Faizan Ali,et al.  Applying Partial Least Squares in Tourism and Hospitality Research , 2018 .

[38]  J. Neyman,et al.  An Introduction to the Theory of Statistics , 1938, Nature.

[39]  Christian Nitzl,et al.  Mediation Analysis in Partial Least Squares Path Modeling: Helping Researchers Discuss More Sophisticated Models , 2016, Ind. Manag. Data Syst..

[40]  Thurasamy Ramayah,et al.  Convergent validity assessment of formatively measured constructs in PLS-SEM , 2018, International Journal of Contemporary Hospitality Management.

[41]  Florian Schuberth,et al.  How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research , 2020, Inf. Manag..

[42]  Ronald T. Cenfetelli,et al.  Interpretation of Formative Measurement in Information Systems Research , 2009, MIS Q..

[43]  Marko Sarstedt,et al.  How to Specify, Estimate, and Validate Higher-Order Constructs in PLS-SEM , 2019, Australasian Marketing Journal.

[44]  Paul Kline,et al.  An easy guide to factor analysis , 1993 .

[45]  C. Spearman General intelligence Objectively Determined and Measured , 1904 .

[46]  Christian Nitzl,et al.  Mediation Analyses in Partial Least Squares Structural Equation Modeling, Helping Researchers Discuss More Sophisticated Models: An Abstract , 2017 .

[47]  Galit Shmueli,et al.  The elephant in the room: Predictive performance of PLS models , 2016 .

[48]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[49]  Adamantios Diamantopoulos,et al.  Advancing formative measurement models , 2008 .

[50]  R. Hambleton,et al.  Fundamentals of Item Response Theory , 1991 .

[51]  Kristopher J Preacher,et al.  Repairing Tom Swift's Electric Factor Analysis Machine , 2003 .

[52]  Nigel O'Brian,et al.  Generalizability Theory I , 2003 .

[53]  D. Straub,et al.  Editor's comments: a critical look at the use of PLS-SEM in MIS quarterly , 2012 .

[54]  Mary Tate,et al.  Assessing the predictive performance of structural equation model estimators , 2016 .

[55]  Marko Sarstedt,et al.  Factors versus Composites: Guidelines for Choosing the Right Structural Equation Modeling Method , 2019 .

[56]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[57]  Marko Sarstedt,et al.  Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research , 2014 .

[58]  Duane T. Wegener,et al.  Evaluating the use of exploratory factor analysis in psychological research. , 1999 .

[59]  Y. Takane,et al.  Generalized structured component analysis , 2004 .

[60]  P. Lachenbruch Statistical Power Analysis for the Behavioral Sciences (2nd ed.) , 1989 .

[61]  S. Geisser A predictive approach to the random effect model , 1974 .

[62]  Paul R. Yarnold,et al.  Reading and Understanding Multivariate Statistics , 1995 .

[63]  G. Mateos-Aparicio Partial Least Squares (PLS) Methods: Origins, Evolution, and Application to Social Sciences , 2011 .

[64]  A. C. Rencher Methods of multivariate analysis , 1995 .

[65]  Herman Wold,et al.  Soft modelling: The Basic Design and Some Extensions , 1982 .

[66]  Marko Sarstedt,et al.  Heuristics versus statistics in discriminant validity testing: a comparison of four procedures , 2019, Internet Res..

[67]  Soumya Ray,et al.  Chapter 3 Predictions from Partial Least Squares Models , 2018, Applying Partial Least Squares in Tourism and Hospitality Research.

[68]  Marko Sarstedt,et al.  Rethinking some of the rethinking of partial least squares , 2019, European Journal of Marketing.

[69]  Detmar W. Straub,et al.  Common Beliefs and Reality About PLS , 2014 .

[70]  J. Hair Multivariate data analysis , 1972 .

[71]  Matt C. Howard A Review of Exploratory Factor Analysis Decisions and Overview of Current Practices: What We Are Doing and How Can We Improve? , 2016, Int. J. Hum. Comput. Interact..

[72]  J. Stevens Applied Multivariate Statistics for the Social Sciences , 1986 .

[73]  M. Sarstedt,et al.  A new criterion for assessing discriminant validity in variance-based structural equation modeling , 2015 .

[74]  Rex B. Kline,et al.  Principles and Practice of Structural Equation Modeling , 1998 .

[75]  B. Thompson Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications , 2004 .

[76]  Edward E. Rigdon,et al.  Rethinking Partial Least Squares Path Modeling: In Praise of Simple Methods , 2012 .

[77]  Edward E. Rigdon,et al.  Rethinking Partial Least Squares Path Modeling: Breaking Chains and Forging Ahead , 2014 .

[78]  Jörg Henseler,et al.  Confirmatory Composite Analysis , 2018, Front. Psychol..

[79]  Jacob Cohen The earth is round (p < .05) , 1994 .