Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging.

[1]  T. Coradin,et al.  Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids , 2014, Nanomaterials.

[2]  P. Libby,et al.  "In vivo" imaging of atherosclerosis. , 2012, Atherosclerosis.

[3]  S. Choi,et al.  Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[4]  Xiaofen Wang,et al.  Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[5]  Ralph Weissleder,et al.  Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. , 2011, Accounts of chemical research.

[6]  R. Jacobs,et al.  Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. , 2011, Biomaterials.

[7]  Kwangmeyung Kim,et al.  Hyaluronidase-sensitive SPIONs for MR/optical dual imaging nanoprobes , 2011 .

[8]  Marcus Textor,et al.  Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. , 2011, Nanoscale.

[9]  S. Lecommandoux,et al.  Polysaccharide-containing block copolymers: synthesis, properties and applications of an emerging family of glycoconjugates. , 2010, Macromolecular rapid communications.

[10]  J. McCarthy Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. , 2010, Advanced drug delivery reviews.

[11]  J. Hamilton,et al.  In vivo Detection of Vulnerable Atherosclerotic Plaque by MRI in a Rabbit Model , 2010, Circulation. Cardiovascular imaging.

[12]  Ralph Weissleder,et al.  The Vascular Biology of Atherosclerosis and Imaging Targets , 2010, Journal of Nuclear Medicine.

[13]  P. Pantazis,et al.  Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. , 2010, Journal of the American Chemical Society.

[14]  Husheng Yan,et al.  Superparamagnetic iron oxide nanoparticles coated with a folate-conjugated polymer , 2009 .

[15]  Liqun Yang,et al.  Chemical Structural and Chain Conformational Characterization of Some Bioactive Polysaccharides Isolated from Natural Sources , 2009 .

[16]  J. Le Meins,et al.  Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. , 2009, Angewandte Chemie.

[17]  J. Gillard,et al.  Noninvasive imaging of atheromatous carotid plaques , 2009, Nature Clinical Practice Cardiovascular Medicine.

[18]  Ick Chan Kwon,et al.  Current status of nanoparticle-based imaging agents for early diagnosis of cancer and atherosclerosis. , 2009, Journal of biomedical nanotechnology.

[19]  E. A. Waters,et al.  Contrast agents for MRI , 2008, Basic Research in Cardiology.

[20]  D. Leslie-Pelecky,et al.  Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. , 2008, Molecular pharmaceutics.

[21]  M. Port,et al.  Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents , 2007, International journal of nanomedicine.

[22]  Zahi A Fayad,et al.  Magnetic resonance imaging of vulnerable atherosclerotic plaques: Current imaging strategies and molecular imaging probes , 2007, Journal of magnetic resonance imaging : JMRI.

[23]  G. Fonarow The global burden of atherosclerotic vascular disease , 2007, Nature Clinical Practice Cardiovascular Medicine.

[24]  B. He,et al.  Oxidized low-density lipoprotein induces differentiation of RAW264.7 murine macrophage cell line into dendritic-like cells. , 2007, Atherosclerosis.

[25]  R. Weissleder,et al.  Molecular Magnetic Resonance Imaging in Cardiovascular Medicine , 2007, Circulation.

[26]  S. Caruthers,et al.  Molecular imaging and therapy of atherosclerosis with targeted nanoparticles , 2007, Journal of magnetic resonance imaging : JMRI.

[27]  Zahi A Fayad,et al.  Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI , 2007, Proceedings of the National Academy of Sciences.

[28]  Benjamin R. Jarrett,et al.  Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging , 2007, Nanotechnology.

[29]  Do Kyung Kim,et al.  Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. , 2006, Journal of the American Chemical Society.

[30]  Erling Falk,et al.  Pathogenesis of atherosclerosis. , 2006, Journal of the American College of Cardiology.

[31]  Keliang Liu,et al.  Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers , 2006 .

[32]  Keliang Liu,et al.  Fe3O4 Nanoparticles coated with homopolymers of glycerol mono(meth)acrylate and their block copolymers , 2005 .

[33]  D. Greaves,et al.  Mechanisms of Disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis , 2005, Nature Clinical Practice Cardiovascular Medicine.

[34]  Ralph Weissleder,et al.  Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle , 2005, Circulation research.

[35]  Zahi A. Fayad,et al.  Molecular, cellular and functional imaging of atherothrombosis , 2004, Nature Reviews Drug Discovery.

[36]  Martin J Graves,et al.  In Vivo Detection of Macrophages in Human Carotid Atheroma: Temporal Dependence of Ultrasmall Superparamagnetic Particles of Iron Oxide–Enhanced MRI , 2004, Stroke.

[37]  E. Groman,et al.  Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. , 2004, Bioconjugate chemistry.

[38]  J. Debatin,et al.  Detection of Atherosclerotic Plaque With Gadofluorine-Enhanced Magnetic Resonance Imaging , 2003, Circulation.

[39]  Valentin Fuster,et al.  Intravascular Modalities for Detection of Vulnerable Plaque: Current Status , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[40]  M. E. Kooi,et al.  Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging , 2003, Circulation.

[41]  P. Libby Inflammation in atherosclerosis , 2002, Nature.

[42]  Andrew C. Li,et al.  The macrophage foam cell as a target for therapeutic intervention , 2002, Nature Medicine.

[43]  P. Libby,et al.  Inflammation and Atherosclerosis , 2002, Circulation.

[44]  M. Linton,et al.  Class A scavenger receptors, macrophages, and atherosclerosis , 2001, Current opinion in lipidology.

[45]  K. Moore,et al.  Lipopolysaccharide Induces Scavenger Receptor A Expression in Mouse Macrophages: A Divergent Response Relative to Human THP-1 Monocyte/Macrophages1 , 2000, The Journal of Immunology.

[46]  K. V. van Dijk,et al.  Macrophage scavenger receptor class A: A multifunctional receptor in atherosclerosis. , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[47]  K. Williams,et al.  Atherosclerosis--an inflammatory disease. , 1999, The New England journal of medicine.