Enhanced magnetic second-harmonic generation from resonant metasurfaces

We demonstrate enhancement of second-harmonic generation efficiency in sub-wavelength resonant nanostructures supporting optically induced magnetic response. This is achieved through simultaneous excitation of electric and magnetic multipoles at the second-harmonic wavelength and their constructive interference.

[1]  George I. Stegeman,et al.  Nonlinear surface electromagnetic phenomena , 1991 .

[2]  Zhaoning Yu,et al.  Nonlinear optical spectroscopy of photonic metamaterials , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[3]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[4]  Shuang Zhang,et al.  Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. , 2005, Physical review letters.

[5]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[6]  Nikulin,et al.  Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics. , 1995, Physical review. B, Condensed matter.

[7]  Nicolae C. Panoiu,et al.  Nonlinear generalized source method for modeling second-harmonic generation in diffraction gratings , 2015, 1501.06974.

[8]  Charles T. Rogers,et al.  Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum , 2004 .

[9]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[10]  Jeremy B. Wright,et al.  Optical magnetic mirrors without metals , 2014, 1403.1308.

[11]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[12]  Kevin J. Malloy,et al.  Second harmonic generation from a nanopatterned isotropic nonlinear material , 2006 .

[13]  J. Zyss,et al.  Molecular Nonlinear Optics: Materials, Physics, and Devices , 2013 .

[14]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[15]  A. Locatelli,et al.  Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. , 2014, Nature nanotechnology.

[16]  David R. Smith,et al.  Nonlinear interference and unidirectional wave mixing in metamaterials. , 2013, Physical review letters.

[17]  Jérémy Butet,et al.  Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation. , 2013, Nano letters.

[18]  André Persoons,et al.  Second-order nonlinear optical properties of chiral materials , 2003 .

[19]  T. Odom,et al.  Nonlinear properties of nanoscale antennas , 2013 .

[20]  Gu Ben,et al.  Surface plasmon subwavelength optics:principles and novel effects , 2007 .

[21]  W. K. Burns,et al.  Third-Harmonic Generation in Absorbing Media of Cubic or Isotropic Symmetry , 1971 .

[22]  S Enoch,et al.  Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. , 2006, Physical review letters.

[23]  Jari Turunen,et al.  Multipole interference in the second-harmonic optical radiation from gold nanoparticles. , 2007, Physical review letters.

[24]  Nicolae C. Panoiu,et al.  Generalized source method for modeling nonlinear diffraction in planar periodic structures , 2014, Photonics Europe.

[25]  John E. Sipe,et al.  Surface and bulk contributions to the second-order nonlinear optical response of a gold film , 2009 .

[26]  Nicolae C. Panoiu,et al.  Subwavelength Nonlinear Plasmonic Nanowire , 2004 .

[27]  Bernhard Lamprecht,et al.  SHG studies of plasmon dephasing in nanoparticles , 1999 .

[28]  G Dolling,et al.  Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. , 2005, Optics letters.

[29]  Igal Brener,et al.  Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. , 2014, Nano letters.

[30]  T. Heinz,et al.  Chapter 5 - Second-Order Nonlinear Optical Effects at Surfaces and Interfaces , 1991 .

[31]  Daniel A. Higgins,et al.  Optical second harmonic generation as a probe of surface chemistry , 1994 .

[32]  Konstantins Jefimovs,et al.  Linear and Second-Order Nonlinear Optical Properties of Arrays of Noncentrosymmetric Gold Nanoparticles , 2002 .

[33]  Konstantins Jefimovs,et al.  Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles. , 2004, Optics express.

[34]  David R. Smith,et al.  Origin of Second-Harmonic Generation Enhancement in Optical Split-Ring Resonators , 2012, 1204.5676.

[35]  Markku Kuittinen,et al.  Enhancement of second-harmonic generation from metal nanoparticles by passive elements. , 2013, Physical review letters.

[36]  M. Wegener,et al.  Second-Harmonic Generation from Magnetic Metamaterials , 2006, Science.

[37]  K. Eisenthal,et al.  Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy. , 1996, Chemical reviews.

[38]  Nicolae C. Panoiu,et al.  Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures , 2009 .

[39]  Tony F. Heinz,et al.  Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit , 2004 .

[40]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[41]  Stefan Linden,et al.  Experiments on second- and third-harmonic generation from magnetic metamaterials. , 2008, Optics express.

[42]  K. Eisenthal Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. , 2006, Chemical reviews.

[43]  Y. Kivshar,et al.  Optical metamaterials with quasicrystalline symmetry: Symmetry-induced optical isotropy , 2013 .

[44]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[45]  Y. Urzhumov,et al.  Nonlinear oscillator metamaterial model: numerical and experimental verification. , 2011, Optics express.

[46]  A. Shcherbakov,et al.  New fast and memory-sparing method for rigorous electromagnetic analysis of 2D periodic dielectric structures , 2012 .