A Characterization of K2, 4-Minor-Free Graphs

We provide a complete structural characterization of $K_{2,4}$-minor-free graphs. The 3-connected $K_{2,4}$-minor-free graphs consist of nine small graphs on at most eight vertices, together with a family of planar graphs that contains $2n-8$ nonisomorphic graphs of order $n$ for each $n \geq 5$ as well as $K_4$. To describe the 2-connected $K_{2,4}$-minor-free graphs we use $xy$-outerplanar graphs, graphs embeddable in the plane with a Hamilton $xy$-path so that all other edges lie on one side of this path. We show that, subject to an appropriate connectivity condition, $xy$-outerplanar graphs are precisely the graphs that have no rooted $K_{2,2}$ minor where $x$ and $y$ correspond to the two vertices on one side of the bipartition of $K_{2,2}$. Each 2-connected $K_{2,4}$-minor-free graph is then (i) outerplanar, (ii) the union of three $xy$-outerplanar graphs and possibly the edge $xy$, or (iii) obtained from a 3-connected $K_{2,4}$-minor-free graph by replacing each edge $x_iy_i$ in a set $\{x_1 y_1, x...

[1]  Guoli Ding Graphs without large $K_{2,n}$-minors , 2017 .

[2]  Bruce A. Reed,et al.  The edge-density for K2, t minors , 2011, J. Comb. Theory, Ser. B.

[3]  Joseph Samuel Myers,et al.  The extremal function for unbalanced bipartite minors , 2003, Discret. Math..

[4]  David R. Wood,et al.  Rooted K 4 -Minors. , 2011 .

[5]  E. Marshall Hamiltonicity and structure of classes of minor-free graphs , 2014 .

[6]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[7]  Bojan Mohar,et al.  Face Covers and the Genus Problem for Apex Graphs , 2001, J. Comb. Theory, Ser. B.

[8]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[9]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[10]  Ken-ichi Kawarabayashi,et al.  Toughness of Ka,t-Minor-Free Graphs , 2011, Electron. J. Comb..

[11]  Cheng Liu,et al.  Excluding a small minor , 2013, Discret. Appl. Math..

[12]  Katsuhiro Ota,et al.  Spanning trees in 3-connected K3, t-minor-free graphs , 2009, Electron. Notes Discret. Math..

[13]  M. Chudnovsky The edge-density for K 2 , t minors , 2008 .

[14]  Seiya Negami A characterization of 3-connected graphs containing a given graph , 1982, J. Comb. Theory, Ser. B.

[15]  Lino Merrit Demasi Rooted Minors and Delta-Wye Transformations , 2012 .

[16]  Xingxing Yu,et al.  The circumference of a graph with no K3, t-minor , 2006, J. Comb. Theory, Ser. B.

[17]  Paul D. Seymour,et al.  Graph minors. IX. Disjoint crossed paths , 1990, J. Comb. Theory, Ser. B.

[18]  G. Dirac A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .