Multiplicative modulations in hue-selective cells enhance unique hue representation

There is still much to understand about the color processing mechanisms in the brain and the transformation from cone-opponent representations to perceptual hues. Moreover, it is unclear which areas(s) in the brain represent unique hues. We propose a hierarchical model inspired by the neuronal mechanisms in the brain for local hue representation, which reveals the contributions of each visual cortical area in hue representation. Local hue encoding is achieved through incrementally increasing processing nonlinearities beginning with cone input. Besides employing nonlinear rectifications, we propose multiplicative modulations as a form of nonlinearity. Our simulation results indicate that multiplicative modulations have significant contributions in encoding of hues along intermediate directions in the MacLeod-Boynton diagram and that model V4 neurons have the capacity to encode unique hues. Additionally, responses of our model neurons resemble those of biological color cells, suggesting that our model provides a novel formulation of the brain’s color processing pathway.

[1]  R. Shapley,et al.  Cone inputs in macaque primary visual cortex. , 2004, Journal of Neurophysiology.

[2]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[3]  M. Webster,et al.  Variations in normal color vision. II. Unique hues. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  R. Shapley,et al.  Color in the Cortex: single- and double-opponent cells , 2011, Vision Research.

[5]  Terrence J. Sejnowski,et al.  Seeing White: Qualia in the Context of Decoding Population Codes , 1999, Neural Computation.

[6]  Leif H. Finkel,et al.  A multistage neural network for color constancy and color induction , 1995, IEEE Trans. Neural Networks.

[7]  J. Mollon,et al.  A neural basis for unique hues? , 2009, Current Biology.

[8]  Eero P. Simoncelli,et al.  Metamers of the ventral stream , 2011, Nature Neuroscience.

[9]  S. Wuerger,et al.  The cone inputs to the unique-hue mechanisms , 2005, Vision Research.

[10]  Bevil R. Conway,et al.  Specialized Color Modules in Macaque Extrastriate Cortex , 2007, Neuron.

[11]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[12]  K. D. De Valois,et al.  A multi-stage color model. , 1993, Vision research.

[13]  D. Kiper,et al.  Chromatic properties of neurons in macaque area V2 , 1997, Visual Neuroscience.

[14]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[15]  Bolei Zhou,et al.  Network Dissection: Quantifying Interpretability of Deep Visual Representations , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[17]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression , 2007, J. Mach. Learn. Res..

[18]  T. Sejnowski,et al.  Representation of Color Stimuli in Awake Macaque Primary Visual Cortex , 2003, Neuron.

[19]  G. Edelman,et al.  A model of color vision based on cortical reentry. , 1996, Cerebral cortex.

[20]  H. Komatsu,et al.  Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey , 2000, The European journal of neuroscience.

[21]  Barry B. Lee,et al.  Specificity of cone inputs to macaque retinal ganglion cells. , 2006, Journal of neurophysiology.

[22]  Kenichi Ueno,et al.  Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging , 2015, Cerebral cortex.

[23]  Ewald Hering Outlines of a theory of the light sense , 1964 .

[24]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. D. Paula Converting RGB Images to LMS Cone Activations , 2006 .

[27]  John K. Tsotsos,et al.  TarzaNN: A General Purpose Neural Network Simulator for Visual Attention Modeling , 2004, WAPCV.

[28]  Bevil R. Conway,et al.  Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex) , 2016, eNeuro.

[29]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[30]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[31]  Gouki Okazawa,et al.  Effects of Luminance Contrast on the Color Selectivity of Neurons in the Macaque Area V4 and Inferior Temporal Cortex , 2014, The Journal of Neuroscience.

[32]  Bevil R. Conway,et al.  Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex , 2009, Proceedings of the National Academy of Sciences.

[33]  Joshua W. Brown,et al.  The tale of the neuroscientists and the computer: why mechanistic theory matters , 2014, Front. Neurosci..

[34]  Robert Shapley,et al.  Neural mechanisms for color perception in the primary visual cortex , 2002, Current Opinion in Neurobiology.

[35]  E. Miyahara Focal Colors and Unique Hues , 2003, Perceptual and motor skills.

[36]  Arvind Satyanarayan,et al.  The Building Blocks of Interpretability , 2018 .

[37]  Fang Liu,et al.  Perceptual Color Map in Macaque Visual Area V4 , 2014, The Journal of Neuroscience.

[38]  P. A. Dufort,et al.  Color categorization and color constancy in a neural network model of V4 , 1991, Biological Cybernetics.

[39]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[40]  Bevil R. Conway,et al.  Neural basis for unique hues , 2008, Current Biology.

[41]  S Yamane,et al.  Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  H. Barlow Why have multiple cortical areas? , 1986, Vision Research.