Designer DNA nanostructures for therapeutics

Summary The field of structural DNA nanotechnology applies the programmability of Watson-Crick base pairing to the construction of custom nanostructures that are prescribed by the sequence information encoded in DNA molecules. Precisely defined geometries, highly programmable molecular interactions, and outstanding biocompatibility make DNA nanostructures a new category of nanocarriers for drug delivery. Over the past decade, the potential of using DNA nanocarrier-based formulation for cancer therapy has been extensively explored with the successful implementation of various therapeutic strategies, both in vitro and in vivo. Moreover, DNA nanocarriers can be encoded with complex instructions via sequence design, enabling therapeutic functions to be executed in a programmed, automatic manner. In this review, we summarize recent advances and discuss the challenges and opportunities in designer DNA nanostructure-enabled therapeutics.

[1]  Dongsheng Liu,et al.  DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. , 2017, Nanoscale.

[2]  Dan Luo,et al.  Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. , 2011, Biomaterials.

[3]  Yonggang Ke,et al.  Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells. , 2018, Journal of the American Chemical Society.

[4]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[5]  Michael Matthies,et al.  Block Copolymer Micellization as a Protection Strategy for DNA Origami. , 2017, Angewandte Chemie.

[6]  D. Gerhold,et al.  Kidney Injury Molecule-1 Outperforms Traditional Biomarkers of Kidney Injury in Multi-site Preclinical Biomarker Qualification Studies , 2010, Nature Biotechnology.

[7]  Hanadi F Sleiman,et al.  Development of DNA Nanostructures for High-Affinity Binding to Human Serum Albumin. , 2017, Journal of the American Chemical Society.

[8]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[9]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[10]  Hao Yan,et al.  Programming molecular topologies from single-stranded nucleic acids , 2018, Nature Communications.

[11]  Zhen Gu,et al.  ATP-triggered anticancer drug delivery , 2014, Nature Communications.

[12]  Vasilis Ntziachristos,et al.  DNA‐Nanostructure–Gold‐Nanorod Hybrids for Enhanced In Vivo Optoacoustic Imaging and Photothermal Therapy , 2016, Advanced materials.

[13]  王全立,et al.  DNA nanotechnology , 2003 .

[14]  Sarah Hurst Petrosko,et al.  Therapeutic applications of spherical nucleic acids. , 2015, Cancer treatment and research.

[15]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[16]  Arun Richard Chandrasekaran,et al.  Exceptional Nuclease Resistance of Paranemic Crossover (PX) DNA and Crossover-Dependent Biostability of DNA Motifs. , 2020, Journal of the American Chemical Society.

[17]  Donald E Ingber,et al.  Modulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape. , 2018, Nano letters.

[18]  Ick Chan Kwon,et al.  Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. , 2013, Chemical communications.

[20]  Xinyuan Zhu,et al.  A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy. , 2018, Angewandte Chemie.

[21]  Peng Huang,et al.  Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function , 2018, Nano Research.

[22]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[23]  William M. Shih,et al.  Glutaraldehyde crosslinking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation. , 2020, Journal of the American Chemical Society.

[24]  J. Gariépy,et al.  Phototoxic aptamers selectively enter and kill epithelial cancer cells , 2008, Nucleic acids research.

[25]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[26]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[27]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[28]  Yamuna Krishnan,et al.  Designing DNA nanodevices for compatibility with the immune system of higher organisms. , 2015, Nature nanotechnology.

[29]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[30]  Antti-Pekka Eskelinen,et al.  Virus-encapsulated DNA origami nanostructures for cellular delivery. , 2014, Nano letters.

[31]  Jiye Shi,et al.  DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury , 2018, Nature Biomedical Engineering.

[32]  Baoquan Ding,et al.  Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method. , 2016, Chemical communications.

[33]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[34]  Chenxiang Lin,et al.  Purification of DNA-origami nanostructures by rate-zonal centrifugation , 2012, Nucleic acids research.

[35]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[36]  Hao Yan,et al.  Single-stranded DNA and RNA origami , 2017, Science.

[37]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[38]  W. Tan,et al.  Molecular Engineering-Based Aptamer-Drug Conjugates with Accurate Tunability of Drug Ratios for Drug Combination Cancer Targeted Therapy. , 2019, Angewandte Chemie.

[39]  Björn Högberg,et al.  Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides , 2013, Nature Methods.

[40]  D. Bang,et al.  Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[41]  Daniel K. Bonner,et al.  Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics , 2014, ACS nano.

[42]  Andrew J Turberfield,et al.  The single-step synthesis of a DNA tetrahedron. , 2004, Chemical communications.

[43]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[44]  Ryan L Setten,et al.  The current state and future directions of RNAi-based therapeutics , 2019, Nature Reviews Drug Discovery.

[45]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[46]  Volker Wagner,et al.  The emerging nanomedicine landscape , 2006, Nature Biotechnology.

[47]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[48]  Jiye Shi,et al.  Smart Drug Delivery Nanocarriers with Self‐Assembled DNA Nanostructures , 2013, Advanced materials.

[49]  Yoshihiro Ito,et al.  Disulfide-Unit Conjugation Enables Ultrafast Cytosolic Internalization of Antisense DNA and siRNA. , 2019, Angewandte Chemie.

[50]  Christopher C. Griffith,et al.  Systemic Delivery of Bc12-Targeting siRNA by DNA Nanoparticles Suppresses Cancer Cell Growth. , 2017, Angewandte Chemie.

[51]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[52]  Baoquan Ding,et al.  A DNA-Based Nanocarrier for Efficient Gene Delivery and Combined Cancer Therapy. , 2018, Nano letters.

[53]  Baoquan Ding,et al.  A Nanobody-Conjugated DNA Nanoplatform for Targeted Platinum Drug Delivery. , 2019, Angewandte Chemie.

[54]  A. C. Hunter,et al.  Nanomedicine: current status and future prospects , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[55]  D. Luo,et al.  The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. , 2009, Biomaterials.

[56]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[57]  Baoquan Ding,et al.  A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo , 2018, Nature Biotechnology.

[58]  Weihong Tan,et al.  DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. , 2014, Angewandte Chemie.

[59]  W. Shih,et al.  Selective Nascent Polymer Catch-and-Release Enables Scalable Isolation of Multi-Kilobase Single-Stranded DNA. , 2018, Angewandte Chemie.

[60]  Veikko Linko,et al.  On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers. , 2018, Angewandte Chemie.

[61]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[62]  A. Krieg,et al.  Therapeutic potential of Toll-like receptor 9 activation , 2006, Nature Reviews Drug Discovery.

[63]  Jocelyn Y. Kishi,et al.  Rapid in vitro production of single-stranded DNA , 2019, Nucleic acids research.

[64]  Lulu Qian,et al.  Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns , 2017, Nature.

[65]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[66]  Yamuna Krishnan,et al.  Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. , 2013, Nature nanotechnology.

[67]  Hao Yan,et al.  A replicable tetrahedral nanostructure self-assembled from a single DNA strand. , 2009, Journal of the American Chemical Society.

[68]  anastasia. khvorova,et al.  The chemical evolution of oligonucleotide therapies of clinical utility , 2017, Nature Biotechnology.

[69]  Yasaman Ahmadi,et al.  (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. , 2018, Nanoscale.

[70]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[71]  Chengde Mao,et al.  DNA nanotubes as combinatorial vehicles for cellular delivery. , 2008, Biomacromolecules.

[72]  Hao Yan,et al.  DNA Gridiron Nanostructures Based on Four-Arm Junctions , 2013, Science.

[73]  Hendrik Dietz,et al.  Gigadalton-scale shape-programmable DNA assemblies , 2017, Nature.

[74]  Qiao Jiang,et al.  A Self-Assembled DNA Origami-Gold Nanorod Complex for Cancer Theranostics. , 2015, Small.

[75]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[76]  Chor Yong Tay,et al.  Cellular processing and destinies of artificial DNA nanostructures. , 2016, Chemical Society reviews.

[77]  Hao Yan,et al.  Structural DNA Nanotechnology: State of the Art and Future Perspective , 2014, Journal of the American Chemical Society.

[78]  Patrick D. Halley,et al.  Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model. , 2016, Small.

[79]  Y. Weizmann,et al.  Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing. , 2015, Journal of the American Chemical Society.

[80]  Casey Grun,et al.  Programmable self-assembly of three-dimensional nanostructures from 104 unique components , 2017, Nature.

[81]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[82]  Y. Takakura,et al.  Enhanced immunostimulatory activity of oligodeoxynucleotides by Y‐shape formation , 2008, Immunology.

[83]  Harry M. T. Choi,et al.  Programming DNA Tube Circumferences , 2008, Science.

[84]  Shu-Jyuan Yang,et al.  Aptamer-based tumor-targeted drug delivery for photodynamic therapy. , 2010, ACS nano.

[85]  Weihong Tan,et al.  DNA "nano-claw": logic-based autonomous cancer targeting and therapy. , 2014, Journal of the American Chemical Society.

[86]  Johannes B. Woehrstein,et al.  Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT , 2014, Science.

[87]  Fuan Wang,et al.  Nonviolent Self-Catabolic DNAzyme Nanosponges for Smart Anticancer Drug Delivery. , 2019, ACS nano.

[88]  E. Winfree,et al.  Design and characterization of programmable DNA nanotubes. , 2004, Journal of the American Chemical Society.

[89]  Hendrik Dietz,et al.  Sequence-programmable covalent bonding of designed DNA assemblies , 2018, Science Advances.

[90]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[91]  W. Chiu,et al.  Designer nanoscale DNA assemblies programmed from the top down , 2016, Science.

[92]  Qiao Jiang,et al.  A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy. , 2016, ACS nano.

[93]  Chad A Mirkin,et al.  Spherical nucleic acids. , 2012, Journal of the American Chemical Society.

[94]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[95]  C. Mao,et al.  Rational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals. , 2019, Journal of the American Chemical Society.

[96]  Hendrik Dietz,et al.  Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami , 2015, Nano letters.

[97]  N. Seeman DNA in a material world , 2003, Nature.

[98]  Kristofer J. Thurecht,et al.  Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date , 2016, Pharmaceutical Research.

[99]  Jung-Won Keum,et al.  Enhanced resistance of DNA nanostructures to enzymatic digestion. , 2009, Chemical communications.

[100]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[101]  Jin-Ho Ahn,et al.  Design, assembly, and activity of antisense DNA nanostructures. , 2011, Small.

[102]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[103]  W. Tan,et al.  Circular Bispecific Aptamer-Mediated Artificial Intercellular Recognition for Targeted T Cell Immunotherapy. , 2020, ACS nano.

[104]  Veikko Linko,et al.  Real‐Time Observation of Superstructure‐Dependent DNA Origami Digestion by DNase I Using High‐Speed Atomic Force Microscopy , 2019, Chembiochem : a European journal of chemical biology.

[105]  Hao Yan,et al.  A DNA nanostructure platform for directed assembly of synthetic vaccines. , 2012, Nano letters.

[106]  Tim Liedl,et al.  Cryopreservation of DNA Origami Nanostructures. , 2020, Small.

[107]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[108]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[109]  Lulu Qian,et al.  Programmable disorder in random DNA tilings. , 2017, Nature nanotechnology.

[110]  Dong-Ming Huang,et al.  Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. , 2011, ACS nano.

[111]  Carolyn R. Bertozzi,et al.  DNA origami protection and molecular interfacing through engineered sequence-defined peptoids , 2020, Proceedings of the National Academy of Sciences.

[112]  Xiaolei Zuo,et al.  DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface , 2018, ACS central science.

[113]  Weihong Tan,et al.  Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. , 2013, Journal of the American Chemical Society.

[114]  Tim Liedl,et al.  One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures. , 2015, Angewandte Chemie.

[115]  Jiye Shi,et al.  Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. , 2014, Angewandte Chemie.

[116]  Role of nanoscale antigen organization on B-cell activation probed using DNA origami , 2020, Nature Nanotechnology.

[117]  Hao Yan,et al.  Complex wireframe DNA origami nanostructures with multi-arm junction vertices. , 2015, Nature nanotechnology.

[118]  Chunhai Fan,et al.  DNA Nanotechnology-Enabled Drug Delivery Systems. , 2018, Chemical reviews.

[119]  Daniel K. Bonner,et al.  Self-assembled RNA interference microsponges for efficient siRNA delivery. , 2012, Nature materials.

[120]  P. Yin,et al.  Enhancing Biocompatible Stability of DNA Nanostructures Using Dendritic Oligonucleotides and Brick Motifs , 2019, Angewandte Chemie.

[121]  Christian Wiraja,et al.  Framework nucleic acids as programmable carrier for transdermal drug delivery , 2019, Nature Communications.

[122]  Chunhai Fan,et al.  Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. , 2015, Angewandte Chemie.

[123]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[124]  H. Sleiman,et al.  DNA nanostructure serum stability: greater than the sum of its parts. , 2013, Chemical communications.

[125]  K. Gothelf,et al.  Multilayer DNA origami packed on hexagonal and hybrid lattices. , 2012, Journal of the American Chemical Society.

[126]  C. Mao,et al.  Conformational flexibility facilitates self-assembly of complex DNA nanostructures , 2008, Proceedings of the National Academy of Sciences.

[127]  Hélder A. Santos,et al.  Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility , 2017, Advanced healthcare materials.

[128]  Zhen Gu,et al.  Cocoon-Like Self-Degradable DNA Nanoclew for Anticancer Drug Delivery , 2014, Journal of the American Chemical Society.

[129]  Mauro Ferrari,et al.  Principles of nanoparticle design for overcoming biological barriers to drug delivery , 2015, Nature Biotechnology.

[130]  Chengde Mao,et al.  Highly connected two-dimensional crystals of DNA six-point-stars. , 2006, Journal of the American Chemical Society.

[131]  William M. Shih,et al.  Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries , 2015, Nature Communications.

[132]  Zhen Gu,et al.  Inflammation‐Triggered Cancer Immunotherapy by Programmed Delivery of CpG and Anti‐PD1 Antibody , 2016, Advanced materials.

[133]  Carlos E. Castro,et al.  Low-cost, simple, and scalable self-assembly of DNA origami nanostructures , 2019, Nano Research.

[134]  Yifan Lv,et al.  Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers , 2015, Nature Protocols.

[135]  H. Sleiman,et al.  Uptake and Fate of Fluorescently Labeled DNA Nanostructures in Cellular Environments: A Cautionary Tale , 2019, ACS central science.

[136]  Baoquan Ding,et al.  A Tailored DNA Nanoplatform for Synergistic RNAi-/Chemotherapy of Multidrug-Resistant Tumors. , 2018, Angewandte Chemie.

[137]  Chao Wang,et al.  Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. , 2015, Angewandte Chemie.

[138]  Hendrik Dietz,et al.  Magnesium-free self-assembly of multi-layer DNA objects , 2012, Nature Communications.

[139]  O. Farokhzad,et al.  Nanomedicines for renal disease: current status and future applications , 2016, Nature Reviews Nephrology.

[140]  Betty Y. S. Kim,et al.  Current concepts: Nanomedicine , 2010 .

[141]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[142]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[143]  Serafino Pantano,et al.  Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury , 2010, Nature Biotechnology.

[144]  M. Zhang,et al.  A Telomerase-Responsive DNA Icosahedron for Precise Delivery of Platinum Nanodrugs to Cisplatin-Resistant Cancer. , 2018, Angewandte Chemie.

[145]  Cuichen Wu,et al.  Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. , 2013, Journal of the American Chemical Society.

[147]  Cuichen Wu,et al.  Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. , 2013, ACS nano.

[148]  Chengde Mao,et al.  Self-assembly of hexagonal DNA two-dimensional (2D) arrays. , 2005, Journal of the American Chemical Society.

[149]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[150]  Weihong Tan,et al.  Programmable and Multiparameter DNA-Based Logic Platform For Cancer Recognition and Targeted Therapy , 2014, Journal of the American Chemical Society.

[151]  Veikko Linko,et al.  Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates. , 2016, Nanoscale.

[152]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions** , 2014, Angewandte Chemie.

[153]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[154]  N. Seeman,et al.  An immobile nucleic acid junction constructed from oligonucleotides , 1983, Nature.

[155]  Xiaoqing Liu,et al.  Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. , 2019, Angewandte Chemie.

[156]  D. Shangguan,et al.  Development of DNA aptamers using Cell-SELEX , 2010, Nature Protocols.

[157]  Richard A. Muscat,et al.  DNA nanotechnology from the test tube to the cell. , 2015, Nature nanotechnology.

[158]  Veikko Linko,et al.  Challenges and Perspectives of DNA Nanostructures in Biomedicine , 2020, Angewandte Chemie.

[159]  Weihong Tan,et al.  Engineering of Bioinspired, Size-Controllable, Self-Degradable Cancer-Targeting DNA Nanoflowers via the Incorporation of an Artificial Sandwich Base. , 2019, Journal of the American Chemical Society.

[160]  Hao Yan,et al.  Rolling circle enzymatic replication of a complex multi-crossover DNA nanostructure. , 2007, Journal of the American Chemical Society.

[161]  Xiao-ming Meng,et al.  TGF-β: the master regulator of fibrosis , 2016, Nature Reviews Nephrology.

[162]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[163]  R. de Vries,et al.  Engineered Diblock Polypeptides Improve DNA and Gold Solubility during Molecular Assembly. , 2017, ACS nano.

[164]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[165]  David J. Mooney,et al.  Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation , 2017, Nature Communications.

[166]  Cuichen Wu,et al.  Self-assembly of DNA Nanohydrogels with Controllable Size and Stimuli-Responsive Property for Targeted Gene Regulation Therapy , 2015, Journal of the American Chemical Society.

[167]  Juan Li,et al.  Self-Assembled and Size-Controllable Oligonucleotide Nanospheres for Effective Antisense Gene Delivery through an Endocytosis-Independent Pathway. , 2019, Angewandte Chemie.

[168]  Yuanyuan Guo,et al.  Camptothecin-Grafted DNA Tetrahedron as Precise Nanomedicine to Inhibit the Tumor Growth. , 2019, Angewandte Chemie.

[169]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[170]  Vincenzo Carnevale,et al.  Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure , 2020, Nucleic acids research.

[171]  Weihong Tan,et al.  Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics , 2013, Proceedings of the National Academy of Sciences.

[172]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[173]  D. Yan,et al.  DNA Trojan Horses: Self-Assembled Floxuridine-Containing DNA Polyhedra for Cancer Therapy. , 2017, Angewandte Chemie.

[174]  Xiaolong Liu,et al.  Equipping Natural Killer Cells with Specific Targeting and Checkpoint Blocking for Enhanced Adoptive Immunotherapy in Solid Tumors. , 2020, Angewandte Chemie.