A physical sciences network characterization of non-tumorigenic and metastatic cells

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences–Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.

Christopher S. Poultney | Casey M. Kraning-Rush | Cynthia A. Reinhart-King | Shannon M. Mumenthaler | Richard Bonneau | Alex Greenfield | C. Kesselman | C. Reinhart-King | W. Hillis | M. Ferrari | P. Decuzzi | S. Gerecht | D. Meldrum | R. Gillies | A. van Oudenaarden | S. Curley | G. Semenza | T. Jacks | J. Widom | J. Licht | R. Gatenby | K. Kung | V. Backman | O. McCarty | R. Austin | M. Paszek | J. Lakins | V. Weaver | E. Holland | G. Lambert | David Liao | P. Gascard | T. Tlsty | Wei-Chiang Chen | Pei-Hsun Wu | Matthew R. Dallas | K. Konstantopoulos | D. Wirtz | W. Arap | A. Lyubimova | F. Michor | P. Mallick | J. Marko | M. Shuler | J. Liphardt | D. Agus | J. Katz | T. O’Halloran | W. Grady | H. Subramanian | D. Damania | A. Fuhrmann | Liyu Liu | L. Kelbauskas | Roger H. Johnson | B. Hempstead | M. King | Laura E. Dickinson | S. Verbridge | B. Godin | S. Srinivasan | Brian J. Kwee | R. Ros | Y. Tseng | R. Pasqualini | C. Fischbach | S. Oh | P. Davies | S. I. Fraley | P. Kuhn | J. Foo | V. Nandakumar | P. Senechal | S. Mumenthaler | V. Estrella | K. Rana | K. Bethel | C. Will | Jonathan W. Wojtkowiak | M. Lloyd | Arig Ibrahim-Hashim | Luis Estévez-Salmerón | J. Aslan | J. Alexander | J. Staunton | G. Tormoen | Nathan C. Choi | Courtney Hemphill | Y. Geng | David B. Jenolyn F. Wadih Shashanka Joseph E. Robert H. Agus Alexander Arap Ashili Aslan Austin Back | S. Ashili | Chira Chen-Tanyolac | C. Frantz | Abigail Hielscher | A. Joo | Kevin G. Philips | Yolanda Stypula | Jenny C. Wan | Steve Oh | Yue Geng | Shashanka Ashili | Luis D. Estévez-Salmerón | Abigail C. Hielscher | Alexander Fuhrmann | Yiider Tseng | Srimeenakshi Srinivasan | S. Fraley

[1]  R. Cailleau,et al.  Tissue culture studies on pleural effusions from breast carcinoma patients. , 1974, Cancer research.

[2]  M Loizidou,et al.  Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion , 1991, The Journal of cell biology.

[3]  E. Butcher,et al.  Role of integrin alpha 4 beta 7/alpha 4 beta P in lymphocyte adherence to fibronectin and VCAM-1 and in homotypic cell clustering , 1992, The Journal of cell biology.

[4]  Y. Kim,et al.  Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. , 1996, Gastroenterology.

[5]  T. Guise Parathyroid hormone‐related protein and bone metastases , 1997, Cancer.

[6]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[7]  D. Mangham,et al.  The normal structure and function of CD44 and its role in neoplasia. , 1998, Molecular pathology : MP.

[8]  W. Dalton,et al.  The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance , 2000, Current opinion in oncology.

[9]  Z. Werb,et al.  New functions for the matrix metalloproteinases in cancer progression , 2002, Nature Reviews Cancer.

[10]  Jayanta Debnath,et al.  Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. , 2003, Methods.

[11]  J. Bamburg,et al.  A proposed mechanism for cell polarization with no external cues. , 2004, Cell motility and the cytoskeleton.

[12]  P. Janmey,et al.  Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. , 2005, Cell motility and the cytoskeleton.

[13]  Cynthia A. Reinhart-King,et al.  Tensional homeostasis and the malignant phenotype. , 2005, Cancer cell.

[14]  Reinhold Nafe,et al.  Morphology of Tumor Cell Nuclei Is Significantly Related with Survival Time of Patients with Glioblastomas , 2005, Clinical Cancer Research.

[15]  G. Collins The next generation. , 2006, Scientific American.

[16]  J. Erler,et al.  Lysyl oxidase mediates hypoxic control of metastasis. , 2006, Cancer research.

[17]  Quynh-Thu Le,et al.  Lysyl oxidase is essential for hypoxia-induced metastasis , 2006, Nature.

[18]  S. Jeffrey,et al.  12 LOX is essential for hypoxia-induced metastasis , 2006 .

[19]  Ioan Tabus,et al.  Dissection of Signaling Pathways in Fourteen Breast Cancer Cell Lines Using Reverse-Phase Protein Lysate Microarray , 2006, Technology in cancer research & treatment.

[20]  F. Giancotti Targeting integrin β4 for cancer and anti-angiogenic therapy , 2007 .

[21]  Genee Y. Lee,et al.  The morphologies of breast cancer cell lines in three‐dimensional assays correlate with their profiles of gene expression , 2007, Molecular oncology.

[22]  Chen Wang,et al.  CD44v4 Is a Major E-Selectin Ligand that Mediates Breast Cancer Cell Transendothelial Migration , 2008, PloS one.

[23]  C. Rueden,et al.  Bmc Medicine Collagen Density Promotes Mammary Tumor Initiation and Progression , 2022 .

[24]  Denis Wirtz,et al.  Particle-tracking microrheology of living cells: principles and applications. , 2009, Annual review of biophysics.

[25]  Valerie M. Weaver,et al.  A tense situation: forcing tumour progression , 2009, Nature Reviews Cancer.

[26]  A. Afify,et al.  Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. , 2009, Experimental and molecular pathology.

[27]  M. Hung,et al.  The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines , 2010 .

[28]  Stephanie I. Fraley,et al.  A distinctive role for focal adhesion proteins in three-dimensional cell motility , 2010, Nature Cell Biology.

[29]  S. Gerecht,et al.  Functional surfaces for high-resolution analysis of cancer cell interactions on exogenous hyaluronic acid. , 2010, Biomaterials.

[30]  Vadim Backman,et al.  Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture. , 2010, Biophysical journal.

[31]  M. Hung,et al.  The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines , 2010, Breast cancer : basic and clinical research.

[32]  E. Furth,et al.  The myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. , 2010, Cancer research.

[33]  J. Jakić-Razumović,et al.  Morphometry of tumor cells in different grades and types of breast cancer. , 2010, Collegium antropologicum.

[34]  J. Tuszynski,et al.  Cancer as a dynamical phase transition , 2011, Theoretical Biology and Medical Modelling.

[35]  Deirdre Meldrum,et al.  Quantitative characterization of preneoplastic progression using single‐cell computed tomography and three‐dimensional karyometry , 2011, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[36]  Vadim Backman,et al.  The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis , 2011, Physical biology.

[37]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[38]  Chonghui Cheng,et al.  CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. , 2011, The Journal of clinical investigation.

[39]  Denis Wirtz,et al.  The physics of cancer: the role of physical interactions and mechanical forces in metastasis , 2011, Nature Reviews Cancer.

[40]  K. Stroka,et al.  Physical confinement alters tumor cell adhesion and migration phenotypes , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  Yunfeng Feng,et al.  Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners , 2012, Nature Communications.

[42]  Denis Wirtz,et al.  Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. , 2012, Biophysical journal.

[43]  Yiider Tseng,et al.  High-throughput ballistic injection nanorheology to measure cell mechanics , 2012, Nature Protocols.