Controlled micro/mesoporous carbon aerogel structure as a template for Bi2O3 nano-particles/rods to improve the performance of asymmetric supercapacitors

[1]  A. Gopalakrishnan,et al.  Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications , 2020 .

[2]  K. Ye,et al.  A self-healing hydrogel electrolyte for flexible solid-state supercapacitors , 2020 .

[3]  N. Hu,et al.  Vertical carbon skeleton introduced three-dimensional MnO2 nanostructured composite electrodes for high-performance asymmetric supercapacitors , 2020 .

[4]  Xiaodong Wang,et al.  3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials , 2020 .

[5]  Wei Wen,et al.  Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6 V high-performance aqueous asymmetric supercapacitor , 2020 .

[6]  Xueying Li,et al.  Template Synthesis of a Heterostructured MnO2@SnO2 Hollow Sphere Composite for High Asymmetric Supercapacitor Performance , 2020 .

[7]  Jianrong Chen,et al.  A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes , 2020 .

[8]  Zhigao Yang,et al.  NiCo2S4 nanoparticles grown on reduced graphene oxides for high-performance asymmetric supercapacitors , 2020 .

[9]  Shuailong Zhang,et al.  Bismuth oxide/nitrogen-doped carbon dots hollow and porous hierarchitectures for high-performance asymmetric supercapacitors , 2020 .

[10]  T. Centeno,et al.  Unravelling the volumetric performance of activated carbons from biomass wastes in supercapacitors , 2020 .

[11]  Xiaobo Chen,et al.  Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors , 2019 .

[12]  Wei Li,et al.  Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials , 2019, Journal of Power Sources.

[13]  Wenqiang Wang,et al.  Bismuth oxide self-standing anodes with concomitant carbon dots welded graphene layer for enhanced performance supercapacitor-battery hybrid devices , 2019, Chemical Engineering Journal.

[14]  Liangbiao Wang,et al.  Trimanganese tetraoxide nanoframeworks: Morphology–controlled synthesis and application in asymmetric supercapacitors , 2019, Journal of Alloys and Compounds.

[15]  Xiaohong Kang,et al.  Valence modulation in hollow carbon nanosphere/manganese oxide composite for high performance supercapacitor , 2019, Applied Surface Science.

[16]  Xifei Li,et al.  Recent advancements of polyaniline-based nanocomposites for supercapacitors , 2019, Journal of Power Sources.

[17]  A. Prasath,et al.  Carbon Quantum Dot-Anchored Bismuth Oxide Composites as Potential Electrode for Lithium-Ion Battery and Supercapacitor Applications , 2019, ACS omega.

[18]  Mian Hasnain Nawaz,et al.  A new route to tailor high mass loading all-solid-state supercapacitor with ultra-high volumetric energy density , 2018, Carbon.

[19]  Bingqiang Cao,et al.  ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes , 2018, Carbon.

[20]  R. Mane,et al.  Room-temperature successive ion transfer chemical synthesis and the efficient acetone gas sensor and electrochemical energy storage applications of Bi2O3 nanostructures , 2018 .

[21]  K. A. Razak,et al.  The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method , 2018 .

[22]  Nikhitha Joseph,et al.  Enhanced electrochemical performances of agglomeration-free LaMnO3 perovskite nanoparticles and achieving high energy and power densities with symmetric supercapacitor design , 2018 .

[23]  Jinping Liu,et al.  Bismuth oxide nanoflake@carbon film: A free-standing battery-type electrode for aqueous sodium ion hybrid supercapacitors , 2018 .

[24]  H. Fan,et al.  Novel ultrathin Bi 2 O 3 nanowires for supercapacitor electrode materials with high performance , 2018 .

[25]  Qingsheng Wu,et al.  Synthesis of sponge‐like Bi2O3 via a soft/hard‐combined biomembrane support system for supercapacitor application , 2018 .

[26]  Xudong Liu,et al.  Dispersed and size-selected WO3 nanoparticles in carbon aerogel for supercapacitor applications , 2018 .

[27]  R. Mane,et al.  Polycrystalline and Mesoporous 3-D Bi2O3 Nanostructured Negatrodes for High-Energy and Power-Asymmetric Supercapacitors: Superfast Room-Temperature Direct Wet Chemical Growth. , 2018, ACS applied materials & interfaces.

[28]  Zhenfa Liu,et al.  Comparative study of metal-doped carbon aerogel: Physical properties and electrochemical performance , 2018 .

[29]  X. Xia,et al.  Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability , 2017 .

[30]  Mojtaba Mirzaeian,et al.  Electrochemical performance of controlled porosity resorcinol/formaldehyde based carbons as electrode materials for supercapacitor applications , 2017 .

[31]  P. Sujaridworakun,et al.  Low-temperature synthesis of δ-Bi2O3 hierarchical nanostructures composed of ultrathin nanosheets for efficient photocatalysis. , 2017 .

[32]  Lihui Zhang,et al.  Carbon aerogels with modified pore structures as electrode materials for supercapacitors , 2017, Journal of Solid State Electrochemistry.

[33]  M. Crane,et al.  Rapid synthesis of transition metal dichalcogenide–carbon aerogel composites for supercapacitor electrodes , 2017, Microsystems & Nanoengineering.

[34]  Bappi Paul,et al.  Fine cutting edge shaped Bi2O3rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. , 2017, Journal of colloid and interface science.

[35]  R. Mane,et al.  A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. , 2017, Dalton transactions.

[36]  Kefan Liu,et al.  Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor , 2017 .

[37]  J. Jung,et al.  Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes , 2017 .

[38]  Jing Liu,et al.  Highly Conductive Mo2C Nanofibers Encapsulated in Ultrathin MnO2 Nanosheets as a Self-Supported Electrode for High-Performance Capacitive Energy Storage. , 2016, ACS applied materials & interfaces.

[39]  Zhiguo Zhang,et al.  A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors , 2016 .

[40]  C. Wong,et al.  1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability. , 2016, Nanoscale.

[41]  Hong Hu,et al.  High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn , 2016 .

[42]  Wenhua Zuo,et al.  Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries , 2016 .

[43]  Guanglin Sun,et al.  Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performance asymmetric supercapacitors , 2016 .

[44]  S. Ramesh,et al.  Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. , 2016, Journal of colloid and interface science.

[45]  Eider Goikolea,et al.  Review on supercapacitors: Technologies and materials , 2016 .

[46]  B. Tang,et al.  Facile synthesis of rod-like Bi2O3 nanoparticles as an electrode material for pseudocapacitors , 2016 .

[47]  Qingsheng Wu,et al.  A High‐Performance Supercapacitor with Well‐Dispersed Bi2O3 Nanospheres and Active‐Carbon Electrodes , 2015 .

[48]  H. Bhunia,et al.  Resorcinol–formaldehyde based nanostructured carbons for CO2 adsorption: kinetics, isotherm and thermodynamic studies , 2015 .

[49]  Xiaobo Ji,et al.  High Energy Density Asymmetric Supercapacitors From Mesoporous NiCo2S4 Nanosheets , 2015 .

[50]  Xin Li,et al.  High-performance all-solid state asymmetric supercapacitor based on Co 3 O 4 nanowires and carbon aerogel , 2015 .

[51]  S. Dou,et al.  Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application , 2015 .

[52]  Mateusz Ciszewski,et al.  Reduced graphene oxide–bismuth oxide composite as electrode material for supercapacitors , 2015, Ionics.

[53]  W. Qian,et al.  Bi2O3 with activated carbon composite as a supercapacitor electrode , 2014 .

[54]  Hui Peng,et al.  High-performance aqueous asymmetric supercapacitor based on carbon nanofibers network and tungsten trioxide nanorod bundles electrodes , 2014 .

[55]  K. Raja,et al.  Nanoporous Anodic Bismuth Oxide for Electrochemical Energy Storage , 2014 .

[56]  J. Tu,et al.  Metal oxide/hydroxide-based materials for supercapacitors , 2014 .

[57]  Shih‐Yuan Lu,et al.  Dispersing WO3 in carbon aerogel makes an outstanding supercapacitor electrode material , 2014 .

[58]  N. Xia,et al.  Controllable growth of Bi2O3 with rod-like structures via the surfactants and its electrochemical properties , 2014, Journal of Applied Electrochemistry.

[59]  Weihua Tang,et al.  Sandwich-structured MnO2/polypyrrole/reduced graphene oxide hybrid composites for high-performance supercapacitors , 2014 .

[60]  S. T. Senthilkumar,et al.  Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances , 2014 .

[61]  Haiwu Zheng,et al.  Separation mechanism of photogenerated charges for p-type α-Bi2O3 nanoparticles with surface states , 2012 .

[62]  Martin Winter,et al.  Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black , 2011 .

[63]  H. Tamon,et al.  Influence of solvent species used in solvent exchange for preparation of mesoporous carbon xerogels from resorcinol and formaldehyde via subcritical drying , 2011 .

[64]  Xingyan Wang,et al.  Polypyrrole/carbon aerogel composite materials for supercapacitor , 2010 .

[65]  Jingjing Xu,et al.  Synthesis of Bi2O3–TiO2 composite film with high-photocatalytic activity under sunlight irradiation , 2008 .

[66]  Patrick Achard,et al.  Carbon xerogels as catalyst supports for PEM fuel cell cathode , 2008 .

[67]  P. Taberna,et al.  High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte , 2007 .

[68]  Sung-Hwan Han,et al.  Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors , 2006 .

[69]  Jun Li,et al.  Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor , 2006 .

[70]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .